Flow and Heat Transfer Performances of Liquid Metal Based Microchannel Heat Sinks under High Temperature Conditions
Abstract
:1. Introduction
2. Modeling and Numerical Methods
2.1. Physical Model
2.2. Mathematical Model
2.2.1. Governing Equations and Boundary Conditions
- (1)
- Both the fluid flow and heat transfer are steady.
- (2)
- The fluid flow is incompressible and single phase.
- (3)
- There is no slip between fluid and wall.
- (4)
- Radiation heat transfer and viscous dissipation effect are neglected.
2.2.2. Mesh Independence and Model Validation
3. Results and Discussions
3.1. Effects of Working Fluid
3.2. Effects of Microchannel Cross-Section
3.3. Effects of Inlet Velocity
4. Conclusions
- (1)
- Among all the seven investigated alkalis, lithium is the best option for working fluid because the lithium-based microchannel heat sink has the best cooling ability and the lowest pressure drop.
- (2)
- For the four considered microchannel cross-section types (rectangle, circle, trapezoid and parallelogram), utilizing a circular microchannel cross-section obtains a higher mean heat transfer coefficient, while using a parallelogram obtains the lowest pressure drop. Considering flow and heat transfer performances comprehensively, the circle is the optimum choice for microchannel cross-section shape because using a circular microchannel has the highest PEC value.
- (3)
- Inlet velocity has a significant influence on the heat sink’s flow and heat transfer performances. When the inlet velocity rises from 1 m/s to 9 m/s, the heat transfer coefficient enhances 74.35% at most, while the pressure drop increases up to 65 times. In order to obtain a favorable overall performance, the inlet velocity should be selected carefully.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | heat transfer area (m2) |
at | mole fraction |
Cp | specific heat capacity (J/(kg·K)) |
Dh | hydraulic diameter (mm) |
f | flow resistance coefficient |
H | height (mm) |
hm | mean heat transfer coefficient (W/(m2·K)) |
k | thermal conductivity (W/(m·K)) |
L | length (mm) |
Nu | Nusselt number |
PEC | performance evaluation criteria |
Pr | Prandtl number |
p | pressure (Pa) |
Q | heat exchange capacity (W) |
q | heat flux (W/m2) |
Re | Reynold number |
RH | hydraulic resistance (Pa·s/m3) |
RThm | thermal resistance (K/W) |
r | radius of inlet and outlet passages (mm) |
T | Kelvin temperature (K) |
tf | Fahrenheit temperature (°F) |
u | velocity in x direction (m/s) |
Vfr | volume flow rate (m3/s) |
v | velocity in y direction (m/s) |
W | width (mm) |
w | velocity in z direction (m/s) |
wt | weight fraction |
x | Cartesian coordinate (m) |
y | Cartesian coordinate (m) |
z | Cartesian coordinate (m) |
Greek symbols | |
ΔP | pressure drop (Pa) |
η | dynamic viscosity (Pa·s) |
λf | thermal conductivity (W/(m·K)) |
ρ | density (kg/m3) |
Subscripts | |
b | heat sink bottom |
c | microchannel |
f | fluid |
K | potassium |
m | manifold |
Na | sodium |
w | wall |
References
- Gangtao, L.; Issam, M. Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels. Int. J. Heat Mass Transf. 2019, 136, 324–354. [Google Scholar]
- Tuckerman, D.B.; Pease, R. High-performance heat sinking for VLSI. IEEE Electr. Device Lett. 1981, 1, 126–129. [Google Scholar] [CrossRef]
- Wu, P.Y.; Little, W.A. Measurement of friction factor for the flow of gases in very fine channels used for micro miniature Joule-Thomson refrigerators. Cryogrnics 1983, 23, 273–277. [Google Scholar]
- Xu, B.; Ooi, K.T.; Wong, N.T.; Choi, W.K. Experimental investigation of flow friction for liquid flow in micro channels. Int. Comm. Mass Transf. 2000, 27, 1165–1176. [Google Scholar] [CrossRef]
- Judy, J.; Maynes, D.; Webb, B.W. Characterization of frictional pressure drop for liquid flows through micro channels. Int. J. Heat Mass Transf. 2002, 45, 3477–3489. [Google Scholar] [CrossRef]
- Qu, W.; Mudawar, I. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int. J. Heat Mass Transf. 2002, 45, 2549–2565. [Google Scholar] [CrossRef]
- Lee, P.S.; Garimella, S.V.; Liu, D. Investigation of heat transfer in rectangular micro channels. Int. J. Heat Mass Transf. 2005, 48, 1688–1704. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Garimella, S.V. Investigation of liquid flow in micro-channels. J. Thermophys. Heat Transf. 2004, 18, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Kandlikar, S.G.; Garimella, S.; Liu, D. Heat Transfer and Fluid Flow in Mini Channels and Micro Channels, 2nd ed.; Elsevier Science: Kidlington, UK, 2013. [Google Scholar]
- TAdams, M.; Abdel-Khalik, S.I.; Jeter, S.M.; Qureshi, Z.H. An experimental investigation of single-phase forced convection in micro channels. Int. J. Heat Mass Transf. 1998, 41, 851–857. [Google Scholar] [CrossRef]
- Adams, T.M.; Dowling, M.F.; Abdel-Khalik, S.I.; Jeter, S.M. Applicability of traditional turbulent single-phase forced convection correlations to non-circular micro-channels. Int. J. Heat Mass Transf. 1999, 42, 4411–4415. [Google Scholar] [CrossRef]
- Yousef, A.; Mohammad, Z.T.; Mohammad, M.H.; Nima, G. Effect of a micro heat sink geometric design on thermo-hydraulic performance: A review. Appl. Therm. Eng. 2020, 170, 114974. [Google Scholar]
- Dalei, J.; Lei, H. Numerical studies on the hydraulic and thermal performances of microchannels with different cross-sectional shapes. Int. J. Heat Mass Transf. 2019, 143, 118604. [Google Scholar]
- Gunnasegaran, P.; Mohammed, H.A.; Shuaib, N.H.; Saidur, R. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. Int. Commun. Heat Mass Transf. 2010, 37, 1078–1086. [Google Scholar] [CrossRef]
- Xia, G.D.; Jiang, J.; Wang, J.; Zhai, Y.L.; Ma, D.D. Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks. Int. J. Heat Mass Transf. 2015, 80, 439–447. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, G.; Mikielewicz, D. A new approach for the mitigating of flow maldistribution in parallel microchannel heat sink. J. Heat Transf. 2018, 140, 072401. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, G.; Mikielewicz, D. Numerical study on mitigation of flow maldistribution on parallel microchannel heat sink: Channels variable width versus variable height approach. J. Electron. Packag. 2019, 141, 021009. [Google Scholar] [CrossRef]
- Ahmed, H.E.; Ahmed, M.I. Optimum thermal design of triangular, trapezoidal and rectangular grooved microchannel heat sinks. Int. Commun. Heat Mass Transf. 2015, 66, 47–57. [Google Scholar] [CrossRef]
- Zhu, J.-F.; Li, X.-Y.; Wang, S.-L.; Yang, Y.-R.; Wang, X.-D. Performance comparison of wavy microchannel heat sinks with wavy bottom rib and side rib designs. Int. J. Therm. Sci. 2019, 146, 106068. [Google Scholar] [CrossRef]
- Wang, S.-L.; Chen, L.-Y.; Zhang, B.-X.; Yang, Y.-R.; Wang, X.-D. A new design of double-layered microchannel heat sinks with wavy microchannels and porous-ribs. J. Therm. Anal. Calorim. 2020, 141, 547–558. [Google Scholar] [CrossRef]
- Ermagan, H.; Rafee, R. Numerical investigation into the thermo-fluid performance of wavy microchannels with superhydrophobic walls. Int. J. Therm. Sci. 2018, 132, 578–588. [Google Scholar] [CrossRef]
- Gong, L.; Li, Y.; Bai, Z.; Xu, M. Thermal performance of micro-channel heat sink with metallic porous/solid compound fin design. Appl. Therm. Eng. 2018, 137, 288–295. [Google Scholar] [CrossRef]
- Ghahremannezhad, A.; Xu, H.; Nazari, M.A.; Ahmadi, M.H.; Vafai, K. Effect of porous substrates on thermohydraulic performance enhancement of double layer microchannel heat sinks. Int. J. Heat Mass Transf. 2019, 131, 52–63. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, S.L.; Wang, X.D.; Wang, T.-H. Selected porous-ribs design for performance improvement in double-layered microchannel heat sinks. Int. J. Therm. Sci. 2019, 137, 616–626. [Google Scholar] [CrossRef]
- Hussien, A.A.; Abdullah, M.Z.; Mohda, A.N. Single-phased heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications. Appl. Energy 2012, 89, 150–155. [Google Scholar]
- Chen, Z.; Qian, P.; Huang, Z.; Luo, C.; Liu, M. Study on flow and heat transfer of liquid metal in a new top-slotted microchannel heat sink. IOP Conf. Ser. Earth Environ. Sci. 2021, 624, 012054. [Google Scholar] [CrossRef]
- Jang, S.P.; Choi, S.U.S. Cooling performance of a microchannel heat sink with nanofluids. Appl. Therm. Eng. 2006, 26, 2457–2463. [Google Scholar] [CrossRef]
- Farsad, E.; Abbasi, S.P.; Zabihi, M.S.; Sabbaghzadeh, J. Numerical simulation of heat transfer in a micro channel heat sink using nanofluids. Heat Mass Transf. 2011, 47, 479–490. [Google Scholar] [CrossRef]
- Sohel, M.R.; Saidur, R.; Sabri, M.F.M.; Kamalisarvestani, M.; Elias, M.M.; Ijam, A. Investigating the heat transfer performance and thermophysical properties of nanofluids in a circular micro-channel. Int. Commun. Heat Mass Transf. 2013, 42, 75–81. [Google Scholar] [CrossRef]
- Sohel, M.R.; Khaleduzzaman, S.S.; Saidur, R.; Hepbasli, A.; Sabri, M.F.M.; Mahhubul, I.M. An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3-H2O nanofluid. Int. J. Heat Mass Transf. 2014, 74, 164–172. [Google Scholar] [CrossRef]
- Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T. Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink. Heat Mass Transf. 2016, 52, 1265–1274. [Google Scholar] [CrossRef]
- Salman, B.H.; Mohammed, H.A.; Kherbeet, A.S. Heat transfer enhancement of nanofluids flow in microtube with constant heat flux. Int. Commun. Heat Mass Transf. 2012, 39, 1195–1204. [Google Scholar] [CrossRef]
- Salman, B.H.; Mohammed, H.A.; Munisamy, K.M.; Kherbeet, A.S. Three-dimensional numerical investigation of nanofluids flow in microtube with different values of heat flux. Heat Transf. Asian Res. 2015, 44, 599–619. [Google Scholar] [CrossRef]
- Kumar, R.; Tiwary, B.; Singh, P.K. Thermofluidic analysis of Al2O3-water nanofluid cooled branched wavy heat sink. Appl. Therm. Eng. 2022, 201, 117787. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.-P.; Qahiti, R.; Jafaryar, M.; Alazwari, M.A.; Abu-Hamdeh, N.H.; Issakhov, A.; Selim, M.M. Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability. J. Petro. Sci. Eng. 2022, 208, 109734. [Google Scholar] [CrossRef]
- Miner, A.; Ghoshal, U. Cooling of high-power-density microdevices using liquid metal coolants. Appl. Phys. Lett. 2004, 85, 506–508. [Google Scholar] [CrossRef]
- Buongiorno, J. Convective transport in nanofluids. ASME J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, Y.; Liu, J. Liquid metal technology in solar power generation—Basics and applications. Sol. Energy Mater. Sol. Cells 2021, 222, 110925. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J. A liquid metal cooling system for the thermal management of high power LEDs. Int. Commun. Heat Mass Transf. 2010, 37, 788–791. [Google Scholar] [CrossRef]
- Ma, K.; Liu, J. Liquid metal cooling in thermal management of computer chips. Front. Energy Power Eng. China 2007, 1, 384–402. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.X. A Computer Chip Cooling Method Which Uses Low Melting Point Metal and Its Alloys as the Cooling Fluid. China Patent 02131419.5, 10 October 2002. [Google Scholar]
- Ghoshal, U.; Grimm, D.; Ibani, S.; Johnston, C.; Miner, A. High performance liquid metal cooling loops. In Proceedings of the IEEE 21st Annual Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 15–17 March 2005; pp. 16–19. [Google Scholar]
- Hodes, M.; Zhang, R.; Lam, L.S.; Wilcoxon, R.; Lower, N. On the potential of Galinstan-based minichannel and minigap cooling. IEEE Trans. Compon. Packag. Technol. 2014, 4, 46–56. [Google Scholar] [CrossRef]
- Zhang, R.; Hodes, M.; Lower, N.; Wilcoxon, R. Water-based microchannel and Galinstan-based minichannel cooling beyond 1 kW/cm2 heat flux. IEEE Trans. Compon. Packag. Technol. 2015, 5, 762–770. [Google Scholar]
- Jarger, W. Heat transfer to liquid metals with empirical models for turbulent forced convection in various geometries. Nucl. Eng. Des. 2017, 319, 12–27. [Google Scholar]
- IAEA. Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data; International Atomic Energy Agency: Vienna, Austria, 2002. [Google Scholar]
- He, Z.; Yan, Y.; Zhang, Z. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy 2021, 216, 119223. [Google Scholar] [CrossRef]
- Wu, T. Numerical Heat Transfer; Xi’an Jiaotong University Press: Xi’an, China, 2001. [Google Scholar]
- Holman, J.P. Heat Transfer, 9th ed.; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Kandikar, S.G.; Garimella, S.; Li, D.Q.; Colin, S.; King, M.R. Heat Transfer and Fluid Flow in Minichannels and Microchannels; Elsevier: Oxford, UK, 2006. [Google Scholar]
- Mortensen, N.A.; Okkels, F.; Bruus, H. Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels. Phys. Rev. 2005, 71, 057301. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, A.; Selvakumar, D.; Wu, J. Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink. Int. J. Heat Mass 2019, 150, 119265. [Google Scholar] [CrossRef]
- Ambreen, T.; Saleem, A.; Park, C.W. Numerical analysis of the heat transfer and fluid flow characteristics of a nanofluid-cooled micropin-fin heat sink using the Eulerian-Lagrangian approach. Powder Technol. 2019, 345, 509–520. [Google Scholar] [CrossRef]
- Ambreen, T.; Saleem, A.; Park, C.W. Pin-fin shape-dependent heat transfer and fluid flow characteristics of water- and nanofluid-cooled micropin-fin heat sinks: Square, circular and triangular fin cross-sections. Appl. Therm. Eng. 2019, 158, 113781. [Google Scholar] [CrossRef]
- Ambreen, T.; Saleem, A.; Ali, H.M.; Shehzad, S.A.; Park, C.W. Performance analysis of hybrid nanofluid in a heat sink equipped with sharp and streamlined micro pin-fins. Powder Technol. 2019, 355, 552–563. [Google Scholar] [CrossRef]
- Ambreen, T.; Saleem, A.; Park, C.W. Analysis of hydro-thermal and entropy generation characteristics of nanofluid in an aluminium foam heat sink by employing Darcy-Forchheimer-Brinkman model coupled with multiphases Eulerian model. Appl. Therm. Eng. 2020, 173, 115231. [Google Scholar] [CrossRef]
- Chai, L.; Xia, G.D.; Wang, H.S. Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls. Appl. Therm. Eng. 2016, 92, 32–41. [Google Scholar] [CrossRef]
Cell Number | Calculated Pressure Drop | Relative Difference |
---|---|---|
1,627,410 | 9709.92 Pa | / |
3,480,055 | 10,320.50 Pa | 5.9% |
5,741,015 | 10,414.30 Pa | 0.9% |
Microchannel Height | RThm (K/W) Present | RThm (K/W) Ref. [52] | Relative Difference |
---|---|---|---|
3 | 0.1174 | 0.1184 | 0.84% |
4 | 0.09944 | 0.1002 | 0.76% |
5 | 0.09076 | 0.09156 | 0.87% |
6 | 0.08648 | 0.08718 | 0.80% |
7 | 0.08429 | 0.08478 | 0.58% |
9 | 0.08282 | 0.08346 | 0.77% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Wang, L.; Tang, Y.; Yin, C.; Li, X. Flow and Heat Transfer Performances of Liquid Metal Based Microchannel Heat Sinks under High Temperature Conditions. Micromachines 2022, 13, 95. https://doi.org/10.3390/mi13010095
Wu T, Wang L, Tang Y, Yin C, Li X. Flow and Heat Transfer Performances of Liquid Metal Based Microchannel Heat Sinks under High Temperature Conditions. Micromachines. 2022; 13(1):95. https://doi.org/10.3390/mi13010095
Chicago/Turabian StyleWu, Tao, Lizhi Wang, Yicun Tang, Chao Yin, and Xiankai Li. 2022. "Flow and Heat Transfer Performances of Liquid Metal Based Microchannel Heat Sinks under High Temperature Conditions" Micromachines 13, no. 1: 95. https://doi.org/10.3390/mi13010095
APA StyleWu, T., Wang, L., Tang, Y., Yin, C., & Li, X. (2022). Flow and Heat Transfer Performances of Liquid Metal Based Microchannel Heat Sinks under High Temperature Conditions. Micromachines, 13(1), 95. https://doi.org/10.3390/mi13010095