Investigation of the Dynamics of Cavitation Bubbles in a Microfluidic Channel with Actuations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Numerical Simulation
3. Results and Discussion
3.1. Visualization of Bubble Generation by Fluorescent Dyes
3.2. Oscillation and Translation of Bubbles
3.3. Bubble Coalescence and Breakup
3.4. Bubble Generation by Low Pressure
3.5. Volume Pulsation by Pressure Fluctuation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Mach, A.J.; Kim, J.H.; Arshi, A.; Hur, S.C.; Carlo, D.D. Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab Chip 2011, 11, 2827–2834. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Huang, X.; Yang, C. Mixing enhancement by the vortex in a microfluidic mixer with actuation. Exp. Therm. Fluid Sci. 2015, 67, 57–61. [Google Scholar] [CrossRef]
- Glasgow, I.; Lieber, S.; Aubry, N. Parameters influencing pulsed flow mixing in microchannels. Anal. Chem. 2004, 76, 4825–4832. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, D. Micromixing using induced-charge electrokinetic flow. Electrochim. Acta 2008, 53, 5827–5835. [Google Scholar] [CrossRef]
- Tatlisoz, M.M.; Canpolat, C. Pulsatile flow micromixing coupled with ICEO for non-Newtonian fluids. Chem. Eng. Process. Process Intensif. 2018, 131, 12–19. [Google Scholar] [CrossRef]
- Park, C.; Wereley, S.T. Rapid generation and manipulation of microfluidic vortex flows induced by AC electrokinetics with optical illumination. Lab Chip 2013, 13, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, D.; Mao, X.; Shi, J.; Juluri, B.K.; Huang, T.J. A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 2009, 9, 2738–2741. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Wang, F.; Burns, M.A.; Kurabayashi, K. Temperature-Programmed Natural Convection for Micromixing and Biochemical Reaction in a Single Microfluidic Chamber. Anal. Chem. 2009, 81, 4510–4516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Rallabandi, B.; Hilgenfeldt, S. Frequency dependence and frequency control of microbubble streaming flows. Phys. Fluids 2013, 25, 022002. [Google Scholar] [CrossRef]
- Segers, T.; Versluis, M. Acoustic bubble sorting for ultrasound contrast agent enrichment. Lab Chip 2014, 14, 1705–1714. [Google Scholar] [CrossRef] [PubMed]
- Su, P.A.Q.; Lim, K.Y.; Ohl, C.D. Cavitation bubble dynamics in microfluidic gaps of variable height. Phys. Rev. E 2009, 80, 047301. [Google Scholar]
- Shang, X. Vortex Generation and Bubble Dynamics in a Microfluidic Chamber with Actuations. Ph.D. Thesis, Nanyang Technological University, Singapore, 2017. [Google Scholar]
- Rasouli, M.R.; Tabrizian, M. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles. Lab Chip 2019, 19, 3316–3325. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Sun, B. Versatile microfluidic mixing platform for high- and low-viscosity liquids via acoustic and chemical microbubbles. Micromachines 2019, 10, 854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaba, A.M.; Jeon, H.; Park, A.; Yi, K.; Baek, S.; Park, A.; Kim, D. Cavitation-microstreaming-based lysis and DNA extraction using a laser-machined polycarbonate microfluidic chip. Sens. Actuators B Chem. 2021, 346, 130511. [Google Scholar] [CrossRef]
- Peng, T.; Zhou, M.; Yuan, S.; Jiang, B. Trapping stable bubbles in hydrophobic microchannel for continuous ultrasonic microparticle manipulation. Sens. Actuators A Phys. 2021, 331, 113045. [Google Scholar] [CrossRef]
- Shang, X.; Huang, X.; Yang, C. Bubble dynamics in a microfluidic chamber under low-frequency actuation. Microfluid. Nanofluid. 2016, 20, 14. [Google Scholar] [CrossRef]
- Timoshenko, W.K.S.; Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill: New York, NY, USA, 1959; pp. 51–72. [Google Scholar]
- Brennen, C.E. Cavitation and Bubble Dynamics; Oxford University Press: London, UK, 1995; p. 89. [Google Scholar]
- Plesset, M.S.; Calif, P. The dynamics of cavitation bubbles. J. Appl. Mech. 1949, 16, 277–282. [Google Scholar] [CrossRef]
- Leighton, T.G. The Acoustic Bubble; Academic Press: San Diego, CA, USA, 1994; pp. 72–128. [Google Scholar]
Component | Boundary Condition | Description |
---|---|---|
Inlet | Velocity inlet | 0.00926 m/s |
Outlet | Pressure outlet | Reference pressure: 101,325 Pa |
Fluid | Density ρ = 998.2 kg/m3 Viscosity µ = 0.001003 Pa·s | |
Wall (Bottom) | Moving | |
Wall (Others) | Stationary |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, X.; Huang, X. Investigation of the Dynamics of Cavitation Bubbles in a Microfluidic Channel with Actuations. Micromachines 2022, 13, 203. https://doi.org/10.3390/mi13020203
Shang X, Huang X. Investigation of the Dynamics of Cavitation Bubbles in a Microfluidic Channel with Actuations. Micromachines. 2022; 13(2):203. https://doi.org/10.3390/mi13020203
Chicago/Turabian StyleShang, Xiaopeng, and Xiaoyang Huang. 2022. "Investigation of the Dynamics of Cavitation Bubbles in a Microfluidic Channel with Actuations" Micromachines 13, no. 2: 203. https://doi.org/10.3390/mi13020203
APA StyleShang, X., & Huang, X. (2022). Investigation of the Dynamics of Cavitation Bubbles in a Microfluidic Channel with Actuations. Micromachines, 13(2), 203. https://doi.org/10.3390/mi13020203