FEM Simulation of a High-Performance 128°Y–X LiNbO3/SiO2/Si Functional Substrate for Surface Acoustic Wave Gyroscopes
Abstract
:1. Introduction
2. Gyroscopic Effect and Simulation Details
2.1. Gyroscopic Effect
2.2. Simulation Details
3. Results and Discussion
3.1. SAW Characteristics of the LNOI Substrate
3.2. Gyroscopic Effect of the LNOI Substrate
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oh, H.; Lee, K.J.; Lee, K.; Yang, S.S. Gyroscopes based on surface acoustic waves. Micro Nano Syst. Lett. 2015, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.W.; Rhim, J.W.; Park, S.W.; Yang, S.S. A micro rate gyroscope based on the SAW gyroscopic effect. J. Micromech. Microeng. 2007, 17, 2272–2279. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W. Enhanced Sensitivity of a Surface Acoustic Wave Gyroscope. Jpn. J. Appl. Phys. 2009, 48, 104502. [Google Scholar] [CrossRef]
- Wang, W.; Wang, W.; Liu, J.; Liu, M.; Yang, S. Wireless and Passive Gyroscope based on Surface Acoustic Wave Gyroscopic Effect. Appl. Phys. Express 2011, 4, 086601. [Google Scholar] [CrossRef]
- Fu, C.; Elmazria, O.; Sarry, F.; Mahalingam, T.; Yang, S.S.; Lee, K. Development of wireless, batteryfree gyroscope based on one-port SAW delay line and double resonant antenna. Sens. Actuators A Phys. 2014, 220, 270–280. [Google Scholar] [CrossRef]
- Kurosawa, M.; Fukuda, Y.; Takasaki, M.; Higuchi, T. A surface acoustic wave gyro sensor. In Proceedings of the International Solid State Sensors and Actuators Conference (Transducers '97), Chicago, IL, USA, 16–19 June 1997; pp. 863–866. [Google Scholar]
- Varadan, V.; Suh, W.; Xavier, P.; Jose, K.; Varadan, V. Design and development of a MEMS-IDT gyroscope. Smart Mater. Struct. 2000, 9, 898. [Google Scholar] [CrossRef]
- Woods, R.C.; Kalami, H.; Johnson, B. Evaluation of a novel surface acoustic wave gyroscope. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 136–141. [Google Scholar] [CrossRef]
- Oh, H.; Lee, K.; Yang, S.S.; Wang, W. Enhanced sensitivity of a surface acoustic wave gyroscope using a progressive wave. J. Micromech. Microeng. 2011, 21, 075015. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Xie, X.; Liu, M.; He, S. Development of a new surface acoustic wave based gyroscope on a X-112 degrees Y LiTaO3 substrate. Sensors 2011, 11, 10894–10906. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Shao, X.; Liu, X.; Liu, J.; He, S. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays. Sensors 2014, 14, 3908–3920. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Wen, W.; Shao, X.; Liu, X.; Yong, L. Optimization of Surface Acoustic Wave-Based Rate Sensors. Sensors 2015, 15, 25761–25773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Lee, K. Enhancing the sensitivity of three-axis detectable surface acoustic wave gyroscope by using a floating thin piezoelectric membrane. Jpn. J. Appl. Phys. 2017, 56, 06GN14. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Liu, W.; Shao, X.; Zhou, S.; Wang, W.; Lin, D. Surface Acoustic Wave Gyroscopic Effect in an Interdigital Transducer. Sensors 2018, 19, 106. [Google Scholar] [CrossRef] [Green Version]
- Ge, F.; Zhao, L.; Zhang, Y. Design and Optimization of a Novel SAW Gyroscope Structure Based on Amplitude Modulation with 1-D Phononic Crystals. Micromachines 2021, 12, 1485. [Google Scholar] [CrossRef] [PubMed]
- Biryukov, S.V.; Schmidt, H.; Weihnacht, M. Gyroscopic effect for SAW in common piezoelectric crystals. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Roma, Italy, 20–23 September 2009; pp. 2133–2136. [Google Scholar]
- Wang, W.; Oh, H.; Lee, K.; Yoon, S.; Yang, S. Enhanced Sensitivity of Novel Surface Acoustic Wave Microelectromechanical System-Interdigital Transducer Gyroscope. Jpn. J. Appl. Phys. 2009, 48, 06FK09. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Xu, F.; He, S.; Li, S.; Lee, K. A New Micro-rate Sensor Based on Shear Horizontal Surface Acoustic Wave Gyroscopic Effect. Jpn. J. Appl. Phys. 2010, 49, 096602. [Google Scholar] [CrossRef]
- Hu, S.M.; Hu, Y.F.; Cao, X.S.; Tian, S.M. Gyro effect on surface acoustic wave propagation in a piezoelectric layered structure. In Proceedings of the 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), Shijiazhuang, China, 1–4 November 2019. [Google Scholar]
- Zhou, S.; Lin, D.; Su, Y.; Zhang, L.; Liu, W. Enhanced dielectric, ferroelectric, and optical properties in rare earth elements doped PMN-PT thin films. J. Adv. Ceram. 2020, 10, 98–107. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Z.; Lin, D.; Liu, W.; Zhang, L. Effects of particle size of dielectric fillers on the output performance of piezoelectric and triboelectric nanogenerators. J. Adv. Ceram. 2021, 10, 991–1000. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, D.; Liu, W.; Wang, J.; Zhou, S.; Su, Y.; Sun, X.; Lin, D. Synthesis, Giant Dielectric, and Pyroelectric Response of [001]-Oriented Pr3+ Doped Pb(Mg1/3Nb2/3)O3-PbTiO3 Ferroelectric Nano-Films Grown on Si Substrates. Materials 2018, 11, 2392. [Google Scholar] [CrossRef] [Green Version]
- Tomar, M.; Gupta, V.; Mansingh, A.; Sreenivas, K. Temperature stability of c-axis oriented LiNbO3/SiO2/Si thin film layered structures. J. Phys. D Appl. Phys. 2001, 34, 2267. [Google Scholar] [CrossRef]
- Tian, X.-G.; Liu, H.; Tao, L.-Q.; Yang, Y.; Jiang, H.; Ren, T.-L. High-resolution, high-linearity temperature sensor using surface acoustic wave device based on LiNbO3/SiO2/Si substrate. Aip Adv. 2016, 6, 095317. [Google Scholar] [CrossRef] [Green Version]
- Ballandras, S.; Courjon, E.; Bernard, F.; Laroche, T.; Butaud, E. New generation of SAW devices on advanced engineered substrates combining piezoelectric single crystals and Silicon. In Proceedings of the Joint Conference of the IEEE International Frequency Control Symposium anEuropean Frequency and Time Forum (EFTF/IFC), Orlando, FL, USA, 14–18 April 2019. [Google Scholar]
- Hsu, T.-H.; Su, F.-C.; Tseng, K.-J.; Li, M.-H. Low loss and wideband surface acoustic wave devices in thin film lithium niobate on insulator (LNOI) platform. In Proceedings of the IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Virtual Conference, 25–29 January 2021; pp. 474–477. [Google Scholar]
- Yan, W.; LIU, X.-q.; SHANG, S.-l.; Xun, X. Fem Modeling Rayleigh Wave Sensors Based on GO/SiO2/128° YX-LiNbO3 Structures. In Proceedings of the 2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), Shijiazhuang, China, 1–4 November 2019; pp. 1–5. [Google Scholar]
- Ma, R.; Liu, W.; Sun, X.; Zhou, S. In-situ Process and simulation of high performance Piezoelectric-on-Silicon substrate for SAW sensor. Front. Mater. 2021, 8, 177. [Google Scholar] [CrossRef]
- Poberaj, G.; Hu, H.; Sohler, W.; Günter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 2012, 6, 488–503. [Google Scholar] [CrossRef]
- Shuai, Y.; Gong, C.; Bai, X.; Wu, C.; Luo, W.; Böttger, R.; Zhou, S.; Tian, B.; Zhang, W. Fabrication of Y128- and Y36-cut lithium niobate single-crystalline thin films by crystal-ion-slicing technique. Jpn. J. Appl. Phys. 2018, 57, 04FK05. [Google Scholar] [CrossRef]
- Hsu, T.-H.; Tseng, K.-J.; Li, M.-H. Large Coupling Acoustic Wave Resonators Based on LiNbO3/SiO2/Si Functional Substrate. IEEE Electr. Device L 2020, 41, 1825–1828. [Google Scholar] [CrossRef]
- Lu, R.; Yang, Y.; Link, S.; Gong, S. Low-Loss 5-GHz First-Order Antisymmetric Mode Acoustic Delay Lines in Thin-Film Lithium Niobate. IEEE T Microw. Theory 2020, 69, 541–550. [Google Scholar] [CrossRef]
- Tseng, K.-J.; Li, M.-H. Frequency and coupling factor scaling of shear horizontal SAW resonators in LNOI platform. In Proceedings of the 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF), Keystone, CO, USA, 19–23 July 2020; pp. 1–3. [Google Scholar]
- Zhou, Y.H.; Jiang, Q. Efiects of Coriolis force and centrifugal force on acoustic waves propagating along the surface of a piezoelectric half-space. Z. Angew. Math. Phys. 2001, 52, 950–965. [Google Scholar] [CrossRef]
- Yan, Q.; Wei, Y.; Shen, M.; Zhu, J.; Li, Y. Theoretical and Experimental Study of Surface Acoustic Wave Gyroscopic Effect. In Proceedings of the International Conference on Mechatronics & Automation, Harbin, China, 5–9 August 2007. [Google Scholar]
- Sun, X.; Liu, W.; Ge, S.; Zhou, S.; Li, X.; Lin, D. Achieving both high electromechanical response and stable temperature behavior in Si/SiO2/Al/LiTaO3 sandwich structure. AIP Adv. 2019, 9, 035145. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Quan, A.; Chen, F.; Li, H. Shear-horizontal surface acoustic wave characteristics of a (110) ZnO/SiO2/Si multilayer structure. J. Alloy. Compd. 2017, 693, 558–564. [Google Scholar] [CrossRef]
- Sarapulov, S.A.; Kisilenko, S.P. Gyroscopic effect in surface acoustic waves. Mekhanika Giroskopicheskikh Sist. 1989, 8, 62–65. [Google Scholar]
- Ro, R.; Lee, R.; Lin, Z.-X.; Sung, C.-C.; Chiang, Y.-F.; Wu, S. Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure. Thin Solid Film. 2013, 529, 470–474. [Google Scholar] [CrossRef]
Materials (T0 = 25 °C) | Temperature Coefficient α1 (10−4/°C) | ||||||
---|---|---|---|---|---|---|---|
Material Constants | LiNbO3 | SiO2 | Si | LiNbO3 | SiO2 | Si | |
Elastic constant (1011 N/m2) | |||||||
C11 | 2.03 | 0.785 | 1.66 | −1.74 | 2.39 | 0.68 | |
C12 | 0.53 | 0.161 | 0.639 | −2.52 | 5.84 | −1 | |
C13 | 0.75 | 0.161 | 0.639 | −1.59 | 5.84 | −1 | |
C14 | 0.09 | 0 | 0 | −2.14 | 0 | 0 | |
C33 | 2.43 | 0.785 | 1.66 | −1.53 | 2.39 | −068 | |
C44 | 0.6 | 0.312 | 0.796 | −2.04 | 1.51 | −0.44 | |
C66 | 0.75 | 0.312 | 0.796 | −1.43 | 1.51 | −0.44 | |
Piezoelectric constant (C/m2) | |||||||
e31 | 0.19 | 2.21 | |||||
e15 | 3.7 | 1.47 | |||||
e33 | 1.31 | 8.87 | |||||
e22 | 2.54 | 0.79 | |||||
Dielectric constant (10−11 F/m) | |||||||
ε11 | 38.9 | 3.2 | 10.36 | 3.23 | 0.263 | 0.68 | |
ε33 | 25.7 | 3.2 | 10.36 | 6.27 | −0.016 | −1 | |
Density (103 kg/m3) | |||||||
ρ | 4.7 | 2.2 | 2.33 | ||||
Thermal expansion coefficient (ppm/°C) | |||||||
β1 | 14.8 | 0.55 | 4.68 | ||||
β3 | 4.1 | 0.55 | 4.68 |
Substrate | K2 (%) | TCF (ppm/°C) | vp (m/s) | Rotation Axis | Ω/ω | Δv+ (m/s) | Δv− (m/s) | η |
---|---|---|---|---|---|---|---|---|
128°Y–X LN | 5.5 | −75 | 3980 | x | 0.1 | −289.75 | 289.75 | 0 |
y | 0.1 | −21.5 | −88.5 | 0.168 | ||||
z | 0.1 | −15.6 | −59.4 | 0.11 | ||||
LNOI (hLN/λ = 0.35, hSiO2/λ = 0.6) | 6.2 | −34.7 | 3427.35 | x | 0.1 | −131.3 | −131.3 | 0 |
y | 0.1 | −32.65 | −46.4 | 0.04 | ||||
z | 0.1 | −4.85 | −9.7 | 0.014 |
Substrate | vp (m/s) | ηy | ηz | K2 (%) | TCF (ppm/°C) | hLN/λ | hSiO2/λ |
---|---|---|---|---|---|---|---|
1-LNOI | 4320.9 | 0.45 | 0.0065 | 0.29 | 1.4 | 0.05 | 0.1 |
2-LNOI | 3983.5 | 0.14 | 0.143 | 5.28 | −84.5 | 1 | 0.85 |
3-LNOI | 3427.45 | 0.04 | 0.014 | 6.2 | −14.8 | 0.35 | 0.6 |
4-LNOI | 3308.9 | 0.07 | 0.0094 | 4.55 | 0.31 | 0.2 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Liu, W.; Sun, X.; Zhou, S.; Lin, D. FEM Simulation of a High-Performance 128°Y–X LiNbO3/SiO2/Si Functional Substrate for Surface Acoustic Wave Gyroscopes. Micromachines 2022, 13, 202. https://doi.org/10.3390/mi13020202
Ma R, Liu W, Sun X, Zhou S, Lin D. FEM Simulation of a High-Performance 128°Y–X LiNbO3/SiO2/Si Functional Substrate for Surface Acoustic Wave Gyroscopes. Micromachines. 2022; 13(2):202. https://doi.org/10.3390/mi13020202
Chicago/Turabian StyleMa, Rui, Weiguo Liu, Xueping Sun, Shun Zhou, and Dabin Lin. 2022. "FEM Simulation of a High-Performance 128°Y–X LiNbO3/SiO2/Si Functional Substrate for Surface Acoustic Wave Gyroscopes" Micromachines 13, no. 2: 202. https://doi.org/10.3390/mi13020202
APA StyleMa, R., Liu, W., Sun, X., Zhou, S., & Lin, D. (2022). FEM Simulation of a High-Performance 128°Y–X LiNbO3/SiO2/Si Functional Substrate for Surface Acoustic Wave Gyroscopes. Micromachines, 13(2), 202. https://doi.org/10.3390/mi13020202