High Rate Deposition of Piezoelectric AlScN Films by Reactive Magnetron Sputtering from AlSc Alloy Targets on Large Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Film Deposition
2.2. Characterization
3. Results and Discussion
3.1. Composition and Structure of AlScN Films
3.2. Piezoelectric and Ferroelectric Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Takeuchi, Y.; Kawahara, N. Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering. Adv. Mater. 2009, 21, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Ng, D.K.T.G.; Ho, C.-P.; Zhang, T.; Xu, L.; Siow, L.-Y.; Chung, W.-W.; Cai, H.; Lee, L.Y.T.; Zhang, Q.; Singh, N. CMOS compatible MEMS pyroelectric infrared detectors: From AlN to AlScN. In Proceedings of the SPIE 11697, MOEMS and Miniaturized Systems XX, Online. 6–12 March 2021; Volume 116970. [Google Scholar] [CrossRef]
- Su, J.; Niekiel, F.; Fichtner, S.; Thormaehlen, L.; Kirchhof, C.; Meyners, D.; Quandt, E.; Wagner, B.; Lofink, F. AlScN-based-MEMS magnetoelectric sensor. Appl. Phys. Lett. 2020, 117, 132903. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Ansari, A. Ferroelectric Aluminum Scandium Nitride Thin Film Bulk Acoustic Resonators with Polarization-Dependent Operating States. Phys. Status Solidi RRL 2021, 15, 2100034. [Google Scholar] [CrossRef]
- Liu, C.; Li, M.; Chen, B.; Zhang, Y.; Zhu, Y. Evaluation of the impact of abnormal grains on the performance of Sc0.15Al0.85N-based BAW resonators and filters. J. Micromech. Microeng. 2022, 32, 034002. [Google Scholar] [CrossRef]
- Barth, S.; Bartzsch, H.; Glöß, D.; Frach, P.; Modes, T.; Zywitzki, O.; Suchaneck, G.; Gerlach, G. Magnetron sputtering of piezoelectric AlN and AlScN thin films and their use in energy harvesting applications. Microsyst. Technol. 2016, 22, 1613–1617. [Google Scholar] [CrossRef]
- Barth, S.; Frach, P.; Bartzsch, H.; Glöß, D.; Zywitzki, O.; Modes, T. Sputter deposition of AlN and AlScN films for actuator, transducer and energy harvesting applications. In Proceedings of the Society of Vacuum Coaters 61st Annual Technical Conference Proceedings 2018, Orlando, FL, USA, 5–10 May 2018. [Google Scholar] [CrossRef]
- Yarar, E.; Fichtner, S.; Hayes, P.; Piorra, A.; Reimer, T.; Lisec, T.; Frank, P.; Wagner, B.; Lofink, F.; Meyners, D.; et al. MEMS-Based AlScN Resonating Energy Harvester with Solidified Powder Magnet. J. Microelectromech. Syst. 2019, 28, 1019–1031. [Google Scholar] [CrossRef]
- Fichtner, S.; Wolff, N.; Lofink, F.; Kienle, L.; Wagner, B. AlScN: A III-V semiconductor based ferroelectric. J. Appl. Phys. 2019, 125, 114103. [Google Scholar] [CrossRef]
- Tsai, S.L.; Hoshii, T.; Wakabayashi, H.; Tsutsui, K.; Chung, T.-K.; Chang, E.Y.; Kakushima, K. Room-temperature deposition of a poling-free ferroelectric AlScN film by reactive sputtering. Appl. Phys. Lett. 2021, 118, 082902. [Google Scholar] [CrossRef]
- Pirro, M.; Herrera, B.; Assylbekova, M.; Giribaldi, G.; Colombo, L.; Rinaldi, M. Characterization of dielectric and piezoelectric properties of ferroelectric AlScN films. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Gainesville, FL, USA, 25–29 January 2021; p. 646. [Google Scholar] [CrossRef]
- Sandu, C.S.; Parsapour, F.; Mertin, S.; Pashchenko, V.; Matloub, R.; LaGrange, T.; Heinz, B.; Muralt, P. Abnormal Grain Growth in AlScN Thin Films Induced by Complexion Formation at Crystallite Interfaces. Phys. Status Solidi A 2019, 216, 1800569. [Google Scholar] [CrossRef]
- Sandu, C.S.; Parsapour, F.; Xiao, D.; Nigon, R.; Riemer, L.M.; LaGrange, T.; Muralt, P. Impact of negative bias on the piezoelectric properties through the incidence of abnormal oriented grains in Al0.62Sc0.38N thin films. Thin Solid Film. 2020, 697, 137819. [Google Scholar] [CrossRef]
- Barth, S.; Bartzsch, H.; Glöß, D.; Frach, P.; Gittner, M.; Labitzke, R. Adjustment of plasma properties in magnetron sputtering by pulsed powering in unipolar/bipolar hybrid pulse mode. Surf. Coat. Technol. 2016, 290, 73–76. [Google Scholar] [CrossRef]
- Frach, P.; Gottfried, C.; Bartzsch, H.; Goedicke, K. The double ring process module—A tool for stationary deposition of metals, insulators and reactive sputtered compounds. Surf. Coat. Technol. 1997, 90, 75–81. [Google Scholar] [CrossRef]
- Sivaramakrishnan, S.; Mardilovich, P.; Schmitz-Kempen, T.; Tiedke, S. Concurrent wafer-level measurement of longitu-dinal and transverse effective piezoelectric coefficients (d33,f and e31,f) by double beam laser interferometry. J. Appl. Phys. 2018, 123, 014103. [Google Scholar] [CrossRef]
- Tasnadi, F.; Alling, B.; Höglund, C.; Winqvist, G.; Birch, J.; Hultmann, L.; Abrikosov, I.A. Origin of the Anomalous Piezoelectric Response inWurtzite ScxAl1-xN Alloys. Phys. Rev. Lett. 2021, 104, 137601. [Google Scholar] [CrossRef] [PubMed]
- Österlund, E.; Ross, G.; Caro, M.A.; Paulasto-Kröckel, M.; Hollmann, A.; Klaus, M.; Meixner, M.; Genzel, C.; Koppinen, P.; Pensala, T.; et al. Stability and residual stresses of sputtered wurtzite AlScN thin films. Phys. Rev. Mater. 2021, 5, 035001. [Google Scholar] [CrossRef]
- Ambacher, O.; Christian, B.; Feil, N.; Urban, D.F.; Elsässer, C.; Preschner, M.; Kirste, L. Wurtzite ScAlN, InAlN, and GaAlN crystals, a comparison of structural, elastic, dielectric, and piezoelectric properties. J. Appl. Phys. 2021, 130, 045102. [Google Scholar] [CrossRef]
- Giribaldi, G.; Pirro, M.; Soukup, B.H.; Assylbekova, M.; Colombo, L.; Rinaldi, M. Compensation of contact nature-dependent assymetry in the leakage current of ferroelectric ScXAl1-XN thin film capacitors. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Online, 25–29 January 2021; p. 650. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barth, S.; Schreiber, T.; Cornelius, S.; Zywitzki, O.; Modes, T.; Bartzsch, H. High Rate Deposition of Piezoelectric AlScN Films by Reactive Magnetron Sputtering from AlSc Alloy Targets on Large Area. Micromachines 2022, 13, 1561. https://doi.org/10.3390/mi13101561
Barth S, Schreiber T, Cornelius S, Zywitzki O, Modes T, Bartzsch H. High Rate Deposition of Piezoelectric AlScN Films by Reactive Magnetron Sputtering from AlSc Alloy Targets on Large Area. Micromachines. 2022; 13(10):1561. https://doi.org/10.3390/mi13101561
Chicago/Turabian StyleBarth, Stephan, Tom Schreiber, Steffen Cornelius, Olaf Zywitzki, Thomas Modes, and Hagen Bartzsch. 2022. "High Rate Deposition of Piezoelectric AlScN Films by Reactive Magnetron Sputtering from AlSc Alloy Targets on Large Area" Micromachines 13, no. 10: 1561. https://doi.org/10.3390/mi13101561
APA StyleBarth, S., Schreiber, T., Cornelius, S., Zywitzki, O., Modes, T., & Bartzsch, H. (2022). High Rate Deposition of Piezoelectric AlScN Films by Reactive Magnetron Sputtering from AlSc Alloy Targets on Large Area. Micromachines, 13(10), 1561. https://doi.org/10.3390/mi13101561