Microfluidic Synthesis, Doping Strategy, and Optoelectronic Applications of Nanostructured Halide Perovskite Materials
Abstract
:1. Introduction
2. Microfluidic Synthesis of Halide Perovskite
3. Doping Strategies
3.1. Ion Doping
3.2. Ion Exchange
4. Optoelectronic Applications
4.1. LEDs and Laser
4.2. Photodetectors
4.3. Solar Cells and Sensor
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Whitesides, G.M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Colin, A.; Squires, T.M.; Bocquet, L. Soft Matter Principles of Microfluidics. Soft Matter 2012, 8, 10527–10529. [Google Scholar] [CrossRef]
- Park, J.I.; Saffari, A.; Kumar, S.; Günther, A.; Kumacheva, E. Microfluidic Synthesis of Polymer and Inorganic Particulate Materials. Annu. Rev. Mater. Res. 2010, 40, 415–443. [Google Scholar] [CrossRef]
- Convery, N.; Gadegaard, N. 30 Years of Microfluidics. Micro Nano Eng. 2019, 2, 76–91. [Google Scholar] [CrossRef]
- Fallahi, H.; Zhang, J.; Phan, H.P.; Nguyen, N.T. Flexible Microfluidics: Fundamentals, Recent Developments, and Applications. Micromachines 2019, 10, 830. [Google Scholar] [CrossRef]
- Kovalenko, M.v.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D.v.; Kagan, C.R.; Klimov, V.I.; Rogach, A.L.; Reiss, P.; Milliron, D.J.; et al. Prospects of Nanoscience with Nanocrystals. ACS Nano 2015, 9, 1012–1057. [Google Scholar] [CrossRef] [PubMed]
- Klimov, V.I.; Mikhailovsky, A.A.; Xu, S.; Malko, A.; Hollingsworth, J.A.; Leatherdale, C.A.; Eisler, H.-J.; Bawendi, M.G. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots. Science (1979) 2000, 290, 314–317. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.W. Review on Sensing Applications of Perovskite Nanomaterials. Chemosensors 2020, 8, 55. [Google Scholar] [CrossRef]
- Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167. [Google Scholar] [CrossRef]
- Zhang, F.; Zhong, H.; Chen, C.; Wu, X.G.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9, 4533–4542. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H.; Piotrowski, M.; Han, X.; Ge, Z.; Dong, L.; Wang, C.; Pinisetty, S.K.; Balguri, P.K.; Bandela, A.K.; et al. Cesium Lead Iodide Perovskites: Optically Active Crystal Phase Stability to Surface Engineering. Micromachines 2022, 13, 1318. [Google Scholar] [CrossRef] [PubMed]
- Eperon, G.E.; Ginger, D.S. B-Site Metal Cation Exchange in Halide Perovskites. ACS Energy Lett. 2017, 2, 1190–1196. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Q.; Li, B.; Shi, Z.; Xu, K.; Chen, Y.; Ning, Z.; Mi, Q. Stabilizing the CsSnCl3 Perovskite Lattice by B-Site Substitution for Enhanced Light Emission. Chem. Mater. 2019, 31, 4999–5004. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, C.; Tang, J.; Huang, G.; Qiang, X.; Fu, Y.; Zhou, W.; Wu, J.; Huang, S. Systematic Microwave-Assisted Postsynthesis of Mn-Doped Cesium Lead Halide Perovskites with Improved Color-Tunable Luminescence and Stability. Nanomaterials 2022, 12, 2535. [Google Scholar] [CrossRef]
- Zheng, F.; Chen, W.; Bu, T.; Ghiggino, K.P.; Huang, F.; Cheng, Y.; Tapping, P.; Kee, T.W.; Jia, B.; Wen, X. Triggering the Passivation Effect of Potassium Doping in Mixed-Cation Mixed-Halide Perovskite by Light Illumination. Adv. Energy Mater. 2019, 9, 1901016. [Google Scholar] [CrossRef]
- Liu, W.; Lin, Q.; Li, H.; Wu, K.; Robel, I.; Pietryga, J.M.; Klimov, V.I. Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content. J. Am. Chem. Soc. 2016, 138, 14954–14961. [Google Scholar] [CrossRef]
- Zou, S.; Yang, G.; Yang, T.; Zhao, D.; Gan, Z.; Chen, W.; Zhong, H.; Wen, X.; Jia, B.; Zou, B. Template-Free Synthesis of High-Yield Fe-Doped Cesium Lead Halide Perovskite Ultralong Microwires with Enhanced Two-Photon Absorption. J. Phys. Chem. Lett. 2018, 9, 4878–4885. [Google Scholar] [CrossRef]
- Xia, Z.; Xu, Z.; Chen, M.; Liu, Q. Recent Developments in the New Inorganic Solid-State LED Phosphors. Dalton Trans. 2016, 45, 11214–11232. [Google Scholar] [CrossRef]
- Ren, A.; Wang, H.; Zhang, W.; Wu, J.; Wang, Z.; Penty, R.V.; White, I.H. Emerging Light-Emitting Diodes for next-Generation Data Communications. Nat. Electron. 2021, 4, 559–572. [Google Scholar] [CrossRef]
- Zhang, Q.; Shang, Q.; Su, R.; Do, T.T.H.; Xiong, Q. Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold. Nano Lett. 2021, 21, 1903–1914. [Google Scholar] [CrossRef]
- Trifiletti, V.; Degousée, T.; Manfredi, N.; Fenwick, O.; Colella, S.; Rizzo, A. Molecular Doping for Hole Transporting Materials in Hybrid Perovskite Solar Cells. Metals 2020, 10, 14. [Google Scholar] [CrossRef]
- Wu, H.T.; Cheng, Y.T.; Leu, C.C.; Wu, S.H.; Shih, C.F. Improving Two-Step Prepared CH3NH3PbI3 Perovskite Solar Cells by Co-Doping Potassium Halide and Water in PbI2 Layer. Nanomaterials 2019, 9, 666. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface Engineering of Highly Efficient Perovskite Solar Cells. Science (1979) 2014, 345, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Zan, J.; Yang, Z.; Wu, Q.; Chen, X.; Ou, X.; Lin, C.; Chen, Q.; Yang, H. A Perovskite-Based Paper Microfluidic Sensor for Haloalkane Assays. Front. Chem. 2021, 9, 682006. [Google Scholar] [CrossRef]
- Hao, N.; Nie, Y.; Xu, Z.; Closson, A.B.; Usherwood, T.; Zhang, J.X.J. Microfluidic Continuous Flow Synthesis of Functional Hollow Spherical Silica with Hierarchical Sponge-like Large Porous Shell. Chem. Eng. J. 2019, 366, 433–438. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, J.K.; Im, S.H.; Park, B.J. Waterproof Light-Emitting Metal Halide Perovskite–Polymer Composite Microparticles Prepared via Microfluidic Device. Part. Part. Syst. Charact. 2021, 38, 2100006. [Google Scholar] [CrossRef]
- Cheng, R.; Liang, Z.B.; Zhu, L.; Li, H.; Zhang, Y.; Wang, C.F.; Chen, S. Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligand-Free Perovskite Quantum Dots. Angew. Chem.—Int. Ed. 2022, 61, e202204371. [Google Scholar] [CrossRef]
- Lignos, I.; Maceiczyk, R.M.; Kovalenko, M.V.; Stavrakis, S. Tracking the Fluorescence Lifetimes of Cesium Lead Halide Perovskite Nanocrystals During Their Synthesis Using a Fully Automated Optofluidic Platform. Chem. Mater. 2020, 32, 27–37. [Google Scholar] [CrossRef]
- Koryakina, I.G.; Naumochkin, M.; Markina, D.I.; Khubezhov, S.A.; Pushkarev, A.P.; Evstrapov, A.A.; Makarov, S.v.; Zyuzin, M.v. Single-Step Microfluidic Synthesis of Halide Perovskite Nanolasers in Suspension. Chem. Mater. 2021, 33, 2777–2784. [Google Scholar] [CrossRef]
- Abdel-Latif, K.; Epps, R.W.; Kerr, C.B.; Papa, C.M.; Castellano, F.N.; Abolhasani, M. Facile Room-Temperature Anion Exchange Reactions of Inorganic Perovskite Quantum Dots Enabled by a Modular Microfluidic Platform. Adv. Funct Mater. 2019, 29, 1900712. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Geng, C.; Shi, S.; Zhang, X.; Bi, W.; Xu, S. Rapid Synthesis of Quantum-Confined CsPbBr3 Perovskite Nanowires Using a Microfluidic Reactor. Nanoscale 2019, 11, 18790–18796. [Google Scholar] [CrossRef] [PubMed]
- Bian, F.; Sun, L.; Wang, Y.; Zhang, D.; Li, Z.; Zhao, Y. Microfluidic Generation of Barcodes with in Situ Synthesized Perovskite Quantum Dot Encapsulation. Sci. China Chem. 2021, 64, 1540–1546. [Google Scholar] [CrossRef]
- Epps, R.W.; Felton, K.C.; Coley, C.W.; Abolhasani, M. Automated Microfluidic Platform for Systematic Studies of Colloidal Perovskite Nanocrystals: Towards Continuous Nano-Manufacturing. Lab Chip 2017, 17, 4040–4047. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Chen, Y.; Lin, P.; Yan, Q.; Fan, Y.; Cheng, Z. Synthesis and Encapsulation of All Inorganic Perovskite Nanocrystals by Microfluidics. J. Mater. Sci. 2019, 54, 6841–6852. [Google Scholar] [CrossRef]
- Khorramshahi, F.; Takshi, A. Microfluidic Approach for Lead Halide Perovskite Flexible Phototransistors. Electron. 2020, 9, 1852. [Google Scholar] [CrossRef]
- MacEiczyk, R.M.; Dümbgen, K.; Lignos, I.; Protesescu, L.; Kovalenko, M.v.; Demello, A.J. Microfluidic Reactors Provide Preparative and Mechanistic Insights into the Synthesis of Formamidinium Lead Halide Perovskite Nanocrystals. Chem. Mater. 2017, 29, 8433–8439. [Google Scholar] [CrossRef]
- Bao, Z.; Wang, H.C.; Jiang, Z.F.; Chung, R.J.; Liu, R.S. Continuous Synthesis of Highly Stable Cs4PbBr6 Perovskite Microcrystals by a Microfluidic System and Their Application in White-Light-Emitting Diodes. Inorg. Chem. 2018, 57, 13071–13074. [Google Scholar] [CrossRef]
- Lignos, I.; Stavrakis, S.; Nedelcu, G.; Protesescu, L.; deMello, A.J.; Kovalenko, M.V. Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. Nano Lett. 2016, 16, 1869–1877. [Google Scholar] [CrossRef]
- Lignos, I.; Protesescu, L.; Emiroglu, D.B.; MacEiczyk, R.; Schneider, S.; Kovalenko, M.v.; DeMello, A.J. Unveiling the Shape Evolution and Halide-Ion-Segregation in Blue-Emitting Formamidinium Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform. Nano Lett. 2018, 18, 1246–1252. [Google Scholar] [CrossRef]
- Lignos, I.; Morad, V.; Shynkarenko, Y.; Bernasconi, C.; Maceiczyk, R.M.; Protesescu, L.; Bertolotti, F.; Kumar, S.; Ochsenbein, S.T.; Masciocchi, N.; et al. Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform. ACS Nano 2018, 12, 5504–5517. [Google Scholar] [CrossRef]
- Lin, P.; Chen, H.; Wei, Z.; Lin, Y.; Lin, J.; Chen, Y.; Cheng, Z. Continuous-Flow Synthesis of Doped All-Inorganic Perovskite Nanocrystals Enabled by a Microfluidic Reactor for Light-Emitting Diode Application. Sci. China Mater. 2020, 63, 1526–1536. [Google Scholar] [CrossRef]
- Geng, Y.; Guo, J.; Ling, S.D.; Wu, X.; Liu, H.; Chen, Z.; Chen, S.; Xu, J. A Nano-Liter Droplet-Based Microfluidic Reactor Serves as Continuous Large-Scale Production of Inorganic Perovskite Nanocrystals. Sci. China Mater. 2022, 65, 2746–2754. [Google Scholar] [CrossRef]
- Liu, X.; Niu, L.; Wu, C.; Cong, C.; Wang, H.; Zeng, Q.; He, H.; Fu, Q.; Fu, W.; Yu, T.; et al. Periodic Organic–Inorganic Halide Perovskite Microplatelet Arrays on Silicon Substrates for Room-Temperature Lasing. Adv. Sci. 2016, 3, 1600137. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhu, H.; Stoumpos, C.C.; Ding, Q.; Wang, J.; Kanatzidis, M.G.; Zhu, X.; Jin, S. Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 2016, 10, 7963–7972. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.A.; Guo, J.; Nouri, M.; Tao, Q.; Li, Z.; Li, Q.; Du, L.; Chen, H.; Dong, Z.; Chang, L.; et al. Microfluidic Solution-Processed Organic and Perovskite Nanowires Fabricated for Field-Effect Transistors and Photodetectors. J. Mater. Chem. C Mater. 2020, 8, 2353–2362. [Google Scholar] [CrossRef]
- Xin, B.; Pak, Y.; Shi, M.; Mitra, S.; Zheng, X.; Bakr, O.M.; Roqan, I.S. Micropump Fluidic Strategy for Fabricating Perovskite Microwire Array-Based Devices Embedded in Semiconductor Platform. Cell Rep. Phys. Sci. 2021, 2, 100304. [Google Scholar] [CrossRef]
- Yuan, Y.; Huang, J. Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. Acc. Chem. Res. 2016, 49, 286–293. [Google Scholar] [CrossRef]
- Xia, Z.; Meijerink, A. Ce3+-Doped Garnet Phosphors: Composition Modification, Luminescence Properties and Applications. Chem. Soc. Rev. 2017, 46, 275–299. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Bakr, O.M.; Sun, H.T. Metal-Doped Lead Halide Perovskites: Synthesis, Properties, and Optoelectronic Applications. Chem. Mater. 2018, 30, 6589–6613. [Google Scholar] [CrossRef]
- Feng, Y.; Wu, J.; Chi, Q.; Li, W.; Yu, Y.; Fei, W. Defects and Aliovalent Doping Engineering in Electroceramics. Chem. Rev. 2020, 120, 1710–1787. [Google Scholar] [CrossRef]
- Amerling, E.; Lu, H.; Larson, B.W.; Maughan, A.E.; Phillips, A.; Lafalce, E.; Whittaker-Brooks, L.; Berry, J.J.; Beard, M.C.; Vardeny, Z.V.; et al. A Multi-Dimensional Perspective on Electronic Doping in Metal Halide Perovskites. ACS Energy Lett. 2021, 6, 1104–1123. [Google Scholar] [CrossRef]
- Phung, N.; Félix, R.; Meggiolaro, D.; Al-Ashouri, A.; Sousa E Silva, G.; Hartmann, C.; Hidalgo, J.; Köbler, H.; Mosconi, E.; Lai, B.; et al. The Doping Mechanism of Halide Perovskite Unveiled by Alkaline Earth Metals. J. Am. Chem. Soc. 2020, 142, 2364–2374. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Peng, B.; Bravić, I.; Yu, Y.; Dong, Y.; Liang, R.; Ou, Q.; Monserrat, B.; Zhang, S. Highly Efficient Blue-Emitting CsPbBr3 Perovskite Nanocrystals through Neodymium Doping. Adv. Sci. 2020, 7, 2001698. [Google Scholar] [CrossRef] [PubMed]
- Euvrard, J.; Yan, Y.; Mitzi, D.B. Electrical Doping in Halide Perovskites. Nat. Rev. Mater. 2021, 6, 531–549. [Google Scholar] [CrossRef]
- Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Grotevent, M.J.; Kovalenko, M.V. Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640. [Google Scholar] [CrossRef]
- Schwartz, D.A.; Norberg, N.S.; Nguyen, Q.P.; Parker, J.M.; Gamelin, D.R. Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co 2+- and Ni2+-Doped ZnO Nanocrystals. J. Am. Chem. Soc. 2003, 125, 13205–13218. [Google Scholar] [CrossRef]
- Hasegawa, H.; Kobayashi, K.; Takahashi, Y.; Harada, J.; Inabe, T. Effective Band Gap Tuning by Foreign Metal Doping in Hybrid Tin Iodide Perovskites. J. Mater. Chem. C Mater. 2017, 5, 4048–4052. [Google Scholar] [CrossRef]
- Darbar, D.; Reddy, M.v.; Bhattacharya, I. Understanding the Effect of Zn Doping on Stability of Cobalt-Free P2-Na0.60Fe0.5Mn0.5O2 Cathode for Sodium Ion Batteries. Electrochem 2021, 2, 323–334. [Google Scholar] [CrossRef]
- Yatom, N.; Toroker, M.C. Hazardous Doping for Photo-Electrochemical Conversion: The Case of Nb-Doped Fe2O3 from First Principles. Molecules 2015, 20, 19900–19906. [Google Scholar] [CrossRef]
- Bateni, F.; Epps, R.W.; Abdel-latif, K.; Dargis, R.; Han, S.; Volk, A.A.; Ramezani, M.; Cai, T.; Chen, O.; Abolhasani, M. Ultrafast Cation Doping of Perovskite Quantum Dots in Flow. Matter 2021, 4, 2429–2447. [Google Scholar] [CrossRef]
- Jiang, H.; Cui, S.; Chen, Y.; Zhong, H. Ion Exchange for Halide Perovskite: From Nanocrystal to Bulk Materials. Nano Sel. 2021, 2, 2040–2060. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Xing, J.; Quan, L.N.; de Arquer, F.P.G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 20 per Cent. Nature 2018, 562, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Wolf, C.; Kim, Y.-T.; Cho, H.; Kwon, W.; Do, S.; Sadhanala, A.; Park, C.G.; Rhee, S.-W.; Im, S.H.; et al. Highly Efficient Light-Emitting Diodes of Colloidal Metal–Halide Perovskite Nanocrystals beyond Quantum Size. ACS Nano 2017, 11, 6586–6593. [Google Scholar] [CrossRef]
- Eaton, S.W.; Lai, M.; Gibson, N.A.; Wong, A.B.; Dou, L.; Ma, J.; Wang, L.W.; Leone, S.R.; Yang, P. Lasing in Robust Cesium Lead Halide Perovskite Nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, C.; Lee, J.; Han, J.; Nurmikko, A. High-Q, Low-Threshold Monolithic Perovskite Thin-Film Vertical-Cavity Lasers. Adv. Mater. 2017, 29, 1604781. [Google Scholar] [CrossRef]
- Jia, Y.; Kerner, R.A.; Grede, A.J.; Brigeman, A.N.; Rand, B.P.; Giebink, N.C. Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator. Nano Lett 2016, 16, 4624–4629. [Google Scholar] [CrossRef]
- Jia, Y.; Kerner, R.A.; Grede, A.J.; Rand, B.P.; Giebink, N.C. Continuous-Wave Lasing in an Organic-Inorganic Lead Halide Perovskite Semiconductor. Nat. Photonics 2017, 11, 784–788. [Google Scholar] [CrossRef]
- Shang, Q.; Li, M.; Zhao, L.; Chen, D.; Zhang, S.; Chen, S.; Gao, P.; Shen, C.; Xing, J.; Xing, G.; et al. Role of the Exciton-Polariton in a Continuous-Wave Optically Pumped CsPbBr3Perovskite Laser. Nano Lett. 2020, 20, 6636–6643. [Google Scholar] [CrossRef]
- Li, Z.; Moon, J.; Gharajeh, A.; Haroldson, R.; Hawkins, R.; Hu, W.; Zakhidov, A.; Gu, Q. Roomerature Continuous-Wave Operation of Organometal Halide Perovskite Lasers. ACS Nano 2018, 12, 10968–10976. [Google Scholar] [CrossRef] [Green Version]
- Brenner, P.; Bar-On, O.; Jakoby, M.; Allegro, I.; Richards, B.S.; Paetzold, U.W.; Howard, I.A.; Scheuer, J.; Lemmer, U. Continuous Wave Amplified Spontaneous Emission in Phase-Stable Lead Halide Perovskites. Nat. Commun. 2019, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- García De Arquer, F.P.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-Processed Semiconductors for next-Generation Photodetectors. Nat. Rev. Mater. 2017, 2, 16100. [Google Scholar] [CrossRef]
- Michalska, M.; Surmiak, M.A.; Maasoumi, F.; Senevirathna, D.C.; Chantler, P.; Li, H.; Li, B.; Zhang, T.; Lin, X.; Deng, H.; et al. Microfluidic Processing of Ligand-Engineered NiO Nanoparticles for Low-Temperature Hole-Transporting Layers in Perovskite Solar Cells. Sol. RRL 2021, 5, 2100342. [Google Scholar] [CrossRef]
Materials | Synthesis Temp. (°C) | Size | PL Peak Location (nm) | Year [Ref.] |
---|---|---|---|---|
CsPbBr3 QDs | RT | <10 nm | ~500 | 2017, Epps et al. [33] |
CsPbBr3 QDs | RT | 10–20 nm | ~520 | 2019, Wei et al. [34] |
CsPbBr3 NWs | 50 | 3–9 μm | 535 | 2021, Koryakina et al. [29] |
CsPbBr3 NWs | 50 | ~4 nm (width) | ~475 | 2019, Zhang et al. [31] |
MAPbI3 | 85 | 60 μm (width) | - | 2020, Khorramshahi et al. [35] |
QD encapsulation | 37 | 500–700 nm | 430–625 | 2021, Bian et al. [32] |
MAPbBr3 composite | - | 500 μm | ~530 | 2021, Kim et al. [26] |
FAPb(I/Br)3 QDs | 120 | ~10 nm | 530–690 | 2017, Maceiczyk et al. [36] |
Cs4PbBr6 MCs | 60–150 | >1 μm | 520 | 2018, Bao et al. [37] |
CsPbX3 QDs | 130–220 | 8–12.5 nm | 470–690 | 2016, Lignos et al. [38,39,40] |
CsPbX3 QDs | RT | <20 nm | 422–660 | 2019, Abdel-Latif et al. [30] |
CsPbX3 NCs | RT | ~15 nm | ~520 | 2020, Lin et al. [41] |
CsPbX3 NCs | 100–180 | <20 nm | 406–677 | 2022, Geng et al. [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, S.; Zhao, X.; Ouyang, W.; Xu, S. Microfluidic Synthesis, Doping Strategy, and Optoelectronic Applications of Nanostructured Halide Perovskite Materials. Micromachines 2022, 13, 1647. https://doi.org/10.3390/mi13101647
Zou S, Zhao X, Ouyang W, Xu S. Microfluidic Synthesis, Doping Strategy, and Optoelectronic Applications of Nanostructured Halide Perovskite Materials. Micromachines. 2022; 13(10):1647. https://doi.org/10.3390/mi13101647
Chicago/Turabian StyleZou, Shuangyang, Xiaoan Zhao, Wenze Ouyang, and Shenghua Xu. 2022. "Microfluidic Synthesis, Doping Strategy, and Optoelectronic Applications of Nanostructured Halide Perovskite Materials" Micromachines 13, no. 10: 1647. https://doi.org/10.3390/mi13101647
APA StyleZou, S., Zhao, X., Ouyang, W., & Xu, S. (2022). Microfluidic Synthesis, Doping Strategy, and Optoelectronic Applications of Nanostructured Halide Perovskite Materials. Micromachines, 13(10), 1647. https://doi.org/10.3390/mi13101647