Development of Finite Element Models of PP, PETG, PVC and SAN Polymers for Thermal Imprint Prediction of High-Aspect-Ratio Microfluidics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Tensile Testing of Termoplastics
3.2. Numerical Simulation of Thermal Imprint
3.3. Thermal Imprint Process Based on Finite Element Modeling Data
3.3.1. Surface Morphology of Imprinted Microstructures
3.3.2. Optical Properties of Imprinted Microstructures
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ivanov, A.; Cheng, K. Non-traditional and hybrid processes for micro and nano manufacturing. Int. J. Adv. Manuf. Technol. 2019, 105, 4481–4482. [Google Scholar] [CrossRef]
- Daniel, M.; Stefan, H.; Günter, R.; Felix, S.; Roland, Z. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. J. Chem. Soc. Rev. 2010, 39, 1153–1182. [Google Scholar]
- Fabrication of Nanofluidic Biochips with Nanochannels for Applications in DNA Analysis. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:000308874900002 (accessed on 18 August 2022).
- Label-Free Optical Single-Molecule Micro- and Nanosensors. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:000453926000013 (accessed on 24 August 2022).
- Choe, S.-W.; Kim, B.; Kim, M. Progress of Microfluidic Continuous Separation Techniques for Micro-/Nanoscale Bioparticles. Biosensors 2021, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Chang, C.-L.; Wang, Y.-N.; Fu, L.-M. Microfluidic Mixing: A Review. Int. J. Mol. Sci. 2011, 12, 3263–3287. [Google Scholar] [CrossRef] [PubMed]
- Heckele, M.; Schomburg, W.K. Review on micro molding of thermoplastic polymers. J. Micromech. Microeng. 2004, 14, R1–R14. [Google Scholar] [CrossRef]
- Wilson, S.A.; Jourdain, R.P.; Zhang, Q.; Dorey, R.A.; Bowen, C.R.; Willander, M.; Wahab, Q.U.; Al-hilli, S.M.; Nur, O.; Quandt, E.; et al. New materials for micro-scale sensors and actuators: An engineering review. Mater. Sci. Eng. R Rep. 2007, 56, 1–129. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Sun, T.; Xu, Z.; Liu, C.; Wang, J.; Chen, L.; Wang, L. Hot embossing of polymer nanochannels using PMMA moulds. Microsyst. Technol. 2013, 19, 629–634. [Google Scholar] [CrossRef]
- Han, K.S.; Lee, H.; Kim, D.; Lee, H. Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method. Sol. Energy Mater. Sol. Cells 2009, 93, 1214–1217. [Google Scholar] [CrossRef]
- Wen, G.; An, L. Pressure-dependent glass-transition temperatures of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends. J. Appl. Polym. Sci. 2003, 90, 959–962. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, Y. (Eds.) Polypropylene—Polymerization and Characterization of Mechanical and Thermal Properties; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Sepahi, M.T.; Abusalma, H.; Jovanovic, V.; Eisazadeh, H. Mechanical Properties of 3D-Printed Parts Made of Polyethylene Terephthalate Glycol. J. Mater. Eng. Perform. 2021, 30, 6851–6861. [Google Scholar] [CrossRef]
- Thermoplastic Materials: Properties, Manufacturing Methods, and Applications. Available online: https://ebookcentral.proquest.com/lib/ktu-ebooks/detail.action?pq-origsite=primo&docID=1447177 (accessed on 17 August 2022).
- Pouzada, A.S.; Ferreira, E.; Pontes, A. Friction properties of moulding thermoplastics. Polym. Test. 2006, 25, 1017–1023. [Google Scholar] [CrossRef]
- Dispersion Properties of Optical Polymers. Available online: http://przyrbwn.icm.edu.pl/APP/PDF/116/a116z442.pdf (accessed on 12 August 2022).
- El-Farahaty, K.; Sadik, A.; Hezma, A. Study of Optical and Structure Properties of Polyester (PET) and Copolyester (PETG) Fibers by Interferometry. Int. J. Polym. Mater. 2007, 56, 715–728. [Google Scholar] [CrossRef]
- Mortazavi, S.H.; Ghoranneviss, M.; Faryadras, S. Effect of Low Pressure Nitrogen DC Plasma on Optical Properties of Biaxial-Oriented Polypropylene (BOPP), Poly Methyl Methacrylate (PMMA) and Poly Vinyl Chloride (PVC) Films. J. Fusion Energy 2012, 31, 211–215. [Google Scholar] [CrossRef]
- Nasseri, B.; Akar, S.; Naseri, E. Chapter 3—Microchannels for microfluidic systems. In Biomedical Applications of Microfluidic Devices; Hamblin, M.R., Karimi, M., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 37–75. [Google Scholar]
- Yi, H.; Zhu, C.; Fu, T.; Ma, Y. Interfacial evolution and dynamics of liquid bridge during droplet coalescence in rectangular microchannels: Effect of aspect ratio. J. Taiwan Inst. Chem. Eng. 2021, 123, 59–67. [Google Scholar] [CrossRef]
PP | PETG | PVC | SAN | |
---|---|---|---|---|
Young’s Modulus (MPa) | 1325.0 | 2950.0 | 3275.0 | 3650.0 |
Poisson’s Ratio | 0.43 | 0.4 | 0.4 | 0.4 |
Bulk Modulus (MPa) | 3888.9 | 4868.0 | 5458.3 | 4055.6 |
Shear Modulus (MPa) | 1296.3 | 1054.3 | 1169.6 | 1351.9 |
Isotropic Secant Coefficient of Thermal Expansion (1/°C) | 6.8 × 10−5 | 4.3 × 10−5 | 3 × 10−5 | 6.8 × 10−5 |
Tensile Ultimate Strength (MPa) | 32.94 | 67.4 | 52.0 | 85.0 |
Tensile Yield Strength (MPa) | 26.1 | 58.7 | 54.8 | 83.4 |
PP | Temperature, °C | 80 | 90 | 100 | 110 | 120 |
Young’s modulus, MPa | 420.0 | 320.0 | 240.0 | 152.0 | 113.3 | |
PETG | Temperature, °C | 120 | 130 | 142 | 150 | 160 |
Young’s modulus, MPa | 3125.0 | 3000.0 | 2666.7 | 333.3 | 250.0 | |
PVC | Temperature, °C | 48 | 60 | 68 | 80 | 90 |
Young’s modulus, MPa | 3750.0 | 2916.7 | 2333.3 | 187.5 | - | |
SAN | Temperature, °C | 65 | 75 | 85 | 95 | 105 |
Young’s modulus, MPa | 6000.0 | 5692.3 | 5142.9 | 4222.2 | 1846.1 |
Elements | Strain, µm/µm | Stress, MPa | Reaction, µN | |
---|---|---|---|---|
Coarse | 1533 | 1.2107 × 10−2 | 5.0409 | 16,655 |
Medium | 2873 | 1.2383 × 10−2 | 5.2205 | 16,701 |
Fine | 5129 | 1.2089 × 10−2 | 5.2511 | 16,647 |
PP | Temperature, °C | 80 | 90 | 100 | 110 | 120 |
Stress, MPa | 5.0409 | 3.793 | 2.668 | 1.5368 | 0.8648 | |
Strain, µm/µm | 0.012 | 0.011 | 0.011 | 0.010 | 0.0076 | |
Reaction force, µN MAX | 16,655 | 12,458 | 8736 | 5024.9 | 2804.8 | |
PETG | Temperature, °C | 120 | 130 | 142 | 150 | 160 |
Stress, MPa | 26.923 | 22.966 | 10.703 | 2.927 | 1.0588 | |
Strain, µm/µm | 0.0086 | 0.00765 | 0.00401 | 0.00878 | 0.00423 | |
Reaction force, µN MAX | 87,723 | 74,711 | 35,215 | 9585 | 3454.8 | |
PVC | Temperature, °C | 48 | 60 | 68 | 80 | 90 |
Stress, MPa | 42.387 | 30.351 | 12.75 | 5.793 | - | |
Strain, µm/µm | 0.0113 | 0.0104 | 0.00546 | 0.0308 | - | |
Reaction force, µN MAX | 138,500 | 99,140 | 41,886 | 18,974 | - | |
SAN | Temperature, °C | 65 | 75 | 85 | 95 | 105 |
Stress, MPa | 37.457 | 38.379 | 36.66 | 26.987 | 8.0495 | |
Strain, µm/µm | 0.0062 | 0.0067 | 0.0071 | 0.00639 | 0.00436 | |
Reaction force, µN MAX | 125,080 | 126,100 | 119,700 | 88,337 | 26,436 |
SAN | PETG | PVC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Load (N) | Time (Sec) | Temp. (°C) | RDE (%) | Load (N) | Time (Sec) | Temp. (°C) | RDE (%) | Load (N) | Time (Sec) | Temp. (°C) | RDE (%) |
5000 | 10 | 100 | 27.07 | 4000 | 10 | 100 | 24.31 | 5000 | 10 | 100 | 5.39 |
5000 | 10 | 120 | 26.49 | 5000 | 5 | 100 | 31.43 | 5000 | 5 | 100 | 12.63 |
5000 | 15 | 120 | 24.94 | 5000 | 10 | 100 | 30.50 | 4000 | 10 | 100 | 7.28 |
5000 | 10 | 140 | 22.52 | 4000 | 5 | 100 | 23.49 | 4000 | 5 | 100 | 11.59 |
4000 | 10 | 140 | 23.28 | 2000 | 10 | 125 | 34.62 | 3000 | 10 | 100 | 5.43 |
4000 | 5 | 140 | 17.85 | 2000 | 10 | 100 | 28.81 | 3000 | 5 | 100 | 11.66 |
3000 | 10 | 140 | 28.12 | 2000 | 5 | 100 | 32.31 | 4000 | 10 | 125 | 10.44 |
3000 | 5 | 140 | 26.85 | 3000 | 10 | 100 | 30.67 | 4000 | 5 | 125 | 7.38 |
3000 | 10 | 130 | 28.23 | 2000 | 10 | 90 | 24.85 | 5000 | 5 | 90 | 6.03 |
5000 | 2 | 130 | 27.76 | 2000 | 5 | 90 | 29.86 | 5000 | 10 | 80 | 22.44 |
5000 | 10 | 130 | 29.04 | 2000 | 10 | 80 | 23.54 | 2000 | 10 | 125 | 6.74 |
4000 | 10 | 130 | 25.25 | 2000 | 5 | 125 | 6.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciganas, J.; Griskevicius, P.; Palevicius, A.; Urbaite, S.; Janusas, G. Development of Finite Element Models of PP, PETG, PVC and SAN Polymers for Thermal Imprint Prediction of High-Aspect-Ratio Microfluidics. Micromachines 2022, 13, 1655. https://doi.org/10.3390/mi13101655
Ciganas J, Griskevicius P, Palevicius A, Urbaite S, Janusas G. Development of Finite Element Models of PP, PETG, PVC and SAN Polymers for Thermal Imprint Prediction of High-Aspect-Ratio Microfluidics. Micromachines. 2022; 13(10):1655. https://doi.org/10.3390/mi13101655
Chicago/Turabian StyleCiganas, Justas, Paulius Griskevicius, Arvydas Palevicius, Sigita Urbaite, and Giedrius Janusas. 2022. "Development of Finite Element Models of PP, PETG, PVC and SAN Polymers for Thermal Imprint Prediction of High-Aspect-Ratio Microfluidics" Micromachines 13, no. 10: 1655. https://doi.org/10.3390/mi13101655
APA StyleCiganas, J., Griskevicius, P., Palevicius, A., Urbaite, S., & Janusas, G. (2022). Development of Finite Element Models of PP, PETG, PVC and SAN Polymers for Thermal Imprint Prediction of High-Aspect-Ratio Microfluidics. Micromachines, 13(10), 1655. https://doi.org/10.3390/mi13101655