Enhanced Visualisation of Normal Anatomy with Potential Use of Augmented Reality Superimposed on Three-Dimensional Printed Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Processing and Segmentation of MRI Dataset Using 3D Slicer
2.2. Segmentation of Bony Anatomy
2.3. Segmentation of Musculature
2.4. Creation of Mixed Reality
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bork, F.; Stratmann, L.; Enssle, S.; Eck, U.; Navab, N.; Waschke, J.; Kugelmann, D. The benefits of an augmented reality magic mirror system for integrated radiology teaching in gross anatomy. Anat. Sci. Educ. 2019, 12, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Uppot, R.N.; Laguna, B.; McCarthy, C.J.; De Novi, G.; Phelps, A.; Siegel, E.; Courtier, J. Implementing virtual and augmented reality tools for radiology education and training, communication, and clinical care. Radiology 2019, 291, 570–580. [Google Scholar] [CrossRef]
- Allman, S.A.; Cordy, J.; Hall, J.P.; Kleanthous, V.; Lander, E.R. Exploring the perception of additional information content in 360 3D VR video for teaching and learning. Virtual Worlds 2022, 1, 1–17. [Google Scholar] [CrossRef]
- Lau, I.; Gupta, A.; Sun, Z. Clinical value of virtual reality versus 3D printing in congenital heart disease. Biomolecules 2021, 11, 884. [Google Scholar] [CrossRef] [PubMed]
- Dhar, P.; Rocks, T.; Samarasinghe, R.M.; Stephenson, G.; Smith, C. Augmented reality in medical education: Students’ experiences and learning outcomes. Med. Educ. Online 2021, 26, 1953953. [Google Scholar] [CrossRef]
- Anatomage, Anatomage Table; Anatomage: Santa Clara, CA, USA. Available online: https://www.anatomage.com (accessed on 24 June 2022).
- Maniam, P.; Schnell, P.; Dan, L.; Portelli, R.; Erolin, C.; Mountain, R.; Wilkinson, T. Exploration of temporal bone anatomy using mixed reality (HoloLens): Development of a mixed reality anatomy teaching resource prototype. J. Vis. Commun. Med. 2020, 43, 17–26. [Google Scholar] [CrossRef]
- Moreta-Martinez, R.; García-Mato, D.; García-Sevilla, M.; Pérez-Mañanes, R.; Calvo-Haro, J.; Pascau, J. Combining augmented reality and 3D printing to display patient models on a smartphone. J. Vis. Exp. 2020, 2, e60618. [Google Scholar] [CrossRef] [Green Version]
- Blum, T.; Kleeberger, V.; Bichlmeier, C.; Navab, N. Mirracle: An augmented reality magic mirror system for anatomy education. In Proceedings of the 2012 IEEE Virtual Reality Workshops (VRW), Costa Mesa, CA, USA, 4–8 March 2012; IEEE Xplore: Piscataway, NJ, USA, 2012; pp. 115–116. [Google Scholar]
- Ma, M.; Fallavollita, P.; Seelbach, I.; Von Der Heide, A.; Euler, E.; Waschke, J.; Navab, N. Personalized augmented reality for anatomy education. Clin. Anat. 2015, 29, 446–453. [Google Scholar] [CrossRef]
- Bork, F.; Lehner, A.; Eck, U.; Navab, N.; Waschke, J.; Kugelmann, D. The effectiveness of collaborative augmented reality in gross anatomy teaching: A quantitative and qualitative pilot study. Anat. Sci. Educ. 2021, 14, 590–604. [Google Scholar] [CrossRef]
- McMenamin, P.; Quayle, M.; McHenry, C.; Adams, J. The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat. Sci. Educ. 2014, 7, 479–486. [Google Scholar] [CrossRef]
- Moro, C.; Štromberga, Z.; Raikos, A.; Stirling, A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat. Sci. Educ. 2017, 10, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Küçük, S.; Kapakin, S.; Göktaş, Y. Learning anatomy via mobile augmented reality: Effects on achievement and cognitive load. Anat. Sci. Educ. 2016, 9, 411–421. [Google Scholar] [CrossRef]
- Wu, P.; Tsay, P.W.; Sun, Z.; Peng, S.J.; Lee, C.Y.; Hsu, M.Y.; Ko, Y.S.; Hsieh, I.C.; Wen, M.S.; Wan, Y.L. Added value of computed tomography virtual intravascular endoscopy in the evaluation of coronary arteries with stents or plaques. Diagnostics 2022, 12, 390. [Google Scholar] [CrossRef]
- Sun, Z.; Winder, R.J.; Kelly, B.E.; Ellis, P.K.; Kennedy, P.T.; Hirst, D.G. Diagnostic value of CT virtual intravascular endoscopy in aortic stent-grafting. J. Endovasc. Ther. 2004, 11, 13–15. [Google Scholar] [CrossRef]
- Sun, Z. 3D multislice CT angiography in post-aortic stent grafting: A pictorial essay. Korean J. Radiol. 2006, 7, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Microsoft. Mixed Reality Toolkit. Available online: https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/?view=mrtkunity-2021-05#getting-started-with-mrtk (accessed on 31 January 2022).
- PTC Vuforia. Vuforia Core Samples. Unity Asset Store. Available online: https://assetstore.unity.com/packages/templates/packs/vuforia-core-samples-99026#description (accessed on 24 January 2022).
- Taha, A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection and tool. BMC. Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef] [Green Version]
- Drake, R.; Vogl, A.; Mitchell, A. Gray’s Anatomy, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Yammine, K.; Erić, M. The fibularis (peroneus) tertius muscle in humans: A meta-analysis of anatomical studies with clinical evolutionary implications. BioMed. Res. Int. 2017, 2017, 222–226. [Google Scholar] [CrossRef]
- Kelley, L.; Peterson, C. Sectional Anatomy: For Imaging Professionals, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- McBain, K.A.; Habib, R.; Laggis, G.; Quaiattini, A.; Ventura, N.M.; Noel, G.P.J.C. Scoping review: The use of augmented reality in clinical anatomical education and its assessment tools. Anat. Sci. Educ. 2021, 15, 765–796. [Google Scholar] [CrossRef]
- Dharte, M.L.; Santos, L.R.; Guimaraes Junior, J.B.; Peccin, M.S. Learning anatomy by virtual reality and augmented reality. A scoping review. Morphologie 2020, 104, 254–266. [Google Scholar] [CrossRef]
- Uruthiralingam, U.; Rea, P.M. Augmented reality and virtual reality in anatomical education-A systematic review. Adv. Exp. Med. Biol. 2020, 1235, 89–101. [Google Scholar]
- England, J.R.; Cheng, P.M. Artificial intelligence for medical imaging analysis: A guide for authors and reviewers. AJR. Am. J. Roentegenol. 2019, 212, 513–519. [Google Scholar] [CrossRef]
- Hesamian, M.H.; Jia, W.; He, X.; Kennedy, P. Deep learning techniques for medical image segmentation: Achievements and challenges. J. Digit. Imaging 2019, 32, 582–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renard, F.; Guedria, S.; De Palma, N.; Vuillerme, N. Variability and reproducibility in deep learning for medical image segmentation. Sci. Rep. 2020, 10, 13724. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geerlings-Batt, J.; Tillett, C.; Gupta, A.; Sun, Z. Enhanced Visualisation of Normal Anatomy with Potential Use of Augmented Reality Superimposed on Three-Dimensional Printed Models. Micromachines 2022, 13, 1701. https://doi.org/10.3390/mi13101701
Geerlings-Batt J, Tillett C, Gupta A, Sun Z. Enhanced Visualisation of Normal Anatomy with Potential Use of Augmented Reality Superimposed on Three-Dimensional Printed Models. Micromachines. 2022; 13(10):1701. https://doi.org/10.3390/mi13101701
Chicago/Turabian StyleGeerlings-Batt, Jade, Carley Tillett, Ashu Gupta, and Zhonghua Sun. 2022. "Enhanced Visualisation of Normal Anatomy with Potential Use of Augmented Reality Superimposed on Three-Dimensional Printed Models" Micromachines 13, no. 10: 1701. https://doi.org/10.3390/mi13101701
APA StyleGeerlings-Batt, J., Tillett, C., Gupta, A., & Sun, Z. (2022). Enhanced Visualisation of Normal Anatomy with Potential Use of Augmented Reality Superimposed on Three-Dimensional Printed Models. Micromachines, 13(10), 1701. https://doi.org/10.3390/mi13101701