Reservoir Computing-Based Design of ZnO Memristor-Type Digital Identification Circuits
Abstract
:1. Introduction
2. Methods
2.1. Pt/ZnO/Pt Memristor and Model
2.2. RC System Based on ZnO Memristor
2.3. Synaptic Plasticity-Based Coding
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Alex, K.; Ilya, S.; Geoffrey, E.H. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar]
- Chao, D.; Chen, C.L.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. 2016, 38, 295–307. [Google Scholar]
- Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Ger. Natl. Res. Cent. Inf. Technol. GMD Tech. Rep. 2001, 148, 13. [Google Scholar]
- Wolfgang, M.; Thomas, N.; Henry, M. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 2002, 14, 2531–2560. [Google Scholar]
- Verstraeten, D.; Schrauwen, B.; D’Haene, M.; Stroobandt, D. An experimental unification of reservoir computing methods. Neural Netw. 2007, 20, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Suman, G.; Lavanya, T.; Gnyaneshwar, D.; Reddivari, M.; Atul, T.; Jitendra, G.; Paul, J.; Kovendhan, D.; Abdul, A.; Dinakar, D.; et al. Asymmetric resistive switching by anion out-diffusion mechanism in transparent Al/ZnO/ITO heterostructure for memristor applications. Surf. Interfaces 2022, 30, 101950. [Google Scholar]
- Hitesh, B.; Atul, T.; Sunil, S.K.; Aloysius, R.P.; Ashok, K. Light assisted irreversible resistive switching in ultra thin hafnium oxide. RSC Adv. 2015, 5, 35046. [Google Scholar]
- Li, H.; Shen, H.; Zhu, X.; Zhang, J.; Li, Y.; Bai, H.; Chen, J.; Zeng, J.; Zheng, J.; Yue, Z.; et al. High Bending Tolerance and Transparent Conductive Zno/Cu/Zno Films on Pet Substrates. Available online: https://ssrn.com/abstract=4210251 (accessed on 30 September 2022).
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuits Syst. 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Yao, P.; Wu, H.; Gao, B.; Tang, J.; Zhang, Q.; Zhang, W.; Yang, J.J.; Qian, H. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641–646. [Google Scholar] [CrossRef]
- Peng, Y.; Huaqiang, W.; Bin, G.; Eryilmaz, S.B.; Huang, X.; Zhang, W.; Zhang, Q.; Deng, N.; Shi, L.; Wong, H.-S.P.; et al. Face classification using electronic synapses. Nat. Commun. 2017, 8, 15199. [Google Scholar]
- Hu, M.; Graves, C.E.; Li, C.; Li, Y.; Ge, N.; Montgomery, E. Memristor-based analog computation and neural network classification with a dot product engine. Adv. Mater. 2018, 30, 1705914. [Google Scholar] [CrossRef]
- Yang, J.; Strukov, D.; Stewart, D. Memristive devices for computing. Nat Nanotech 2013, 8, 13–24. [Google Scholar] [CrossRef]
- Fuxi, C.; Justin, M.C.; Seung, H.L.; Yong, L.; Vishishtha, B.; Zhengya, Z.; Michael, P.F.; Wei, D.L. A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations. Nat. Electron. 2019, 2, 290–299. [Google Scholar]
- Nguyen, T.V.; An, J.; Min, K.-S. Memristor-cmos hybrid neuron circuit with nonideal-effect correction related to parasitic resistance for binary-memristor-crossbar neural networks. Micromachines 2021, 12, 791. [Google Scholar] [CrossRef]
- Li, R.; Huang, P.; Feng, Y.; Zhou, Z.; Zhang, Y.; Ding, X.; Liu, L.; Kang, J. Hardware demonstration of srdp neuromorphic computing with online unsupervised learning based on memristor synapses. Micromachines 2022, 13, 433. [Google Scholar] [CrossRef]
- Can, L.; Catherine, E.G.; Xia, S.; Darrin, M.; Martin, F.; Giacomo, P.; John, P.S. Analog content addressable memories with memristors. Nat. Commun. 2020, 11, 1638. [Google Scholar]
- Cao, Q.; Lü, W.; Wang, X.R.; Guan, X.; Wang, L.; Yan, S.; Wu, T.; Wang, X. Nonvolatile multistates memories for high-density data storage. ACS Appl. Mater. Interfaces 2020, 12, 42449–42471. [Google Scholar] [CrossRef]
- Alon, A.; Stefan, S.; Hannes, M.; Ronald, T.; Thomas, M. Nonlinear dynamics of a locally-active memristor. IEEE Trans. Circuits Syst. I 2015, 62, 1165–1174. [Google Scholar]
- Fernando, C.; Mauro, F. Nonlinear dynamics of memristor oscillators via the flux-charge analysis method. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar]
- Lin, H.; Wang, C.; Sun, Y.; Yao, W. Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 2020, 100, 3667–3683. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Tan, Y. Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 2020, 99, 2369–2386. [Google Scholar] [CrossRef]
- Khaled, A.A.; Mostafa, R.; Amer, B.; Jean-Philippe, D.; Jalal, J. Crossbar memory architecture performing memristor overwrite logic. In Proceedings of the 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy, 27–29 November 2019; pp. 723–726. [Google Scholar]
- Luo, L.; Dong, Z.; Duan, S.; Lai, C.S. Memristor based stateful logic gates for multi-functional logic circuit. IET Circuits Devices Syst. 2020, 14, 811–818. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Deng, Q.; Xu, C.; Deng, Z.K.; Zhou, C. Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn. 2021, 106, 959–973. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Cui, L.; Sun, Y.; Xu, C.; Yu, F. Brain-like initial-boosted hyperchaos and application in biomedical image encryption. IEEE Trans. Ind. Inform. 2022, 18, 8839–8850. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Xu, C.; Zhang, X.; Herbert, H.C.I. A memristive synapse control method to generate diversified multi-structure chaotic attractors. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2022, in press. [Google Scholar]
- Jacob, T.; Mathieu, R.; Flavio, A.A.; Sumito, T.; Guru, K.; Damien, Q.; Paolo, B.; Vincent, C.; Kay, Y.; Akio, F.; et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 2017, 547, 428–431. [Google Scholar]
- Ryosho, N.; Gouhei, T.; Akira, H. Reservoir computing with spin waves excited in a garnet film. IEEE Access 2018, 6, 4462–4469. [Google Scholar]
- Kristof, V.; Pauline, M.; Thomas, V.V.; Martin, F.; Geert, M.; David, V.; Benjamin, S.; Joni, D.; Peter, B. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 2014, 5, 3541. [Google Scholar]
- Guy, V.D.S.; Daniel, B.; Miguel, C.S. Advances in photonic reservoir computing. Nanophotonics 2017, 6, 561–576. [Google Scholar]
- Romain, M.; Sergei, R.; Maxime, J.; Yanne, K.C.; Laurent, L. Photonic nonlinear transient computing with multiple-delay wavelength dynamics. Phys. Rev. Lett. 2012, 108, 244101. [Google Scholar]
- Chao, D.; Fuxi, C.; Mohammed, A.Z.; Wen, M.; Seung, H.L.; Wei, D.L. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017, 8, 2204. [Google Scholar]
- John, M.; Wen, M.; Jong, H.S.; Fuxi, C.; Chao, D.; Seung, H.L.; Wei, D.L. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2019, 2, 480–487. [Google Scholar]
- Midya, R.; Wang, Z.; Asapu, S.; Zhang, X.; Rao, M.; Song, W.; Zhuo, Y.; Upadhyay, N.; Xia, Q.; Yang, J.J. Reservoir computing using diffusive memristors. Adv. Intell. Syst. 2019, 1, 1900084. [Google Scholar] [CrossRef] [Green Version]
- Manjari, S.K.; Christof, T. Memristor-based reservoir computing. In Proceedings of the 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), New York, NY, USA, 4–6 July 2012; pp. 226–232. [Google Scholar]
- Zhong, Y.; Tang, J.; Li, X.; Gao, B.; Qian, H.; Wu, H. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun. 2021, 12, 408. [Google Scholar] [CrossRef]
- Wang, Z.; Joshi, S.; Savel’ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z.; et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Ting, C.; Sung-Hyun, J.; Wei, L. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 2011, 5, 7669–7676. [Google Scholar]
- Zhang, Y.; Wu, Z.; Liu, S.; Guo, Z.C.; Wang, P.; Liu, G. A quantized convolutional neural network implemented with memristor for image denoising and recognition. Front. Neurosci. 2021, 15, 717222. [Google Scholar] [CrossRef]
- Hong, Q. Full Circuit Design of Memristive Neural Network and Its Applications. Ph.D. Thesis, Huazhong University of Science & Technology, Wuhan, China, 2019. [Google Scholar]
- Gouhei, T.; Toshiyuki, Y.; Jean, B.H.; Ryosho, N.; Naoki, K. Recent advances in physical reservoir computing: A review. Neural Netw. 2019, 115, 100–123. [Google Scholar]
- Kohei, N. Physical reservoir computing-an introductory perspective. Jpn. J. Appl. Phys. 2020, 59, 060501. [Google Scholar]
- Benjamin, S.; David, V.; Jan, M.V.C. An overview of reservoir computing: Theory, applications and implementations. In Proceedings of the 15th European Symposium on Artificial Neural Networks, Bruges, Belgium, 25–27 April 2007; pp. 471–482. [Google Scholar]
- Masahiro, M.; Mathias, H.A.; Beat, H.G.; Urs, G. A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature 2004, 431, 453–456. [Google Scholar]
- Azarakhsh, J.; Glenn, V.W.; Rik, V.D.W. Real-time reservoir computing network-based systems for detection tasks on visual contents. In Proceedings of the 7th International Conference on Computational Intelligence, Communication Systems and Networks, Riga, Latvia, 3–5 June 2015; pp. 146–151. [Google Scholar]
- Michele, S.; Joshua, M.; Simone, P.; Michael, A.; Francesco, M.; Andrea, C.; Francesco, C.; Roberto, O.; Philip, W. Experimental photonic quantum memristor. Nat. Photon. 2022, 16, 318–323. [Google Scholar]
- Yoon, H.J.; Woohyun, K.; Jihun, K.; Kyung, S.W.; Hyun, J.L.; Jeong, W.J.; Sung, K.S.; Janguk, H.; Cheol, S.H. Time-varying data processing with nonvolatile memristor-based temporal kernel. Nat. Commun. 2021, 12, 5727. [Google Scholar]
- Gianluca, M.; Giacomo, P.; Kevin, M.; Saverio, R.; Shahin, H.; Luca, B.; Daniele, I.; Carlo, R. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 2022, 21, 195–202. [Google Scholar]
RC System Types | Number of Samples | Image Size | Trainable Parameters | Accuracy |
---|---|---|---|---|
This work | 60,000/10,000 | 28 × 28 | 1970 | 89.52% |
7225 | 95.08% | |||
Basic RC | 60,000/10,000 | 28 × 28 | 528,000 | 92.0% |
Dynamic memristor-based RC | 14,000/2000 | 22 × 20 | 1760 | 85.6% |
Diffusive memristor-based RC | 60,000/10,000 | 22 × 20 | 2200 | 83.0% |
Photonic quantum memristor-based RC | 1000/1000 (Contains only 0,3,8) | 18 × 12 | about 1600 | 95% |
Memristor temporal kernel-based RC | 50,000/10,000 | 28 × 28 | 1970 | 90.01% |
7828 | 95.01% | |||
Self-organizing nanowire network- based RC | 60,000/10,000 | 28 × 28 | - | 90.04% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, Y.; Guo, Z.; Wu, Z.; Chen, X.; Du, S. Reservoir Computing-Based Design of ZnO Memristor-Type Digital Identification Circuits. Micromachines 2022, 13, 1700. https://doi.org/10.3390/mi13101700
Wang L, Zhang Y, Guo Z, Wu Z, Chen X, Du S. Reservoir Computing-Based Design of ZnO Memristor-Type Digital Identification Circuits. Micromachines. 2022; 13(10):1700. https://doi.org/10.3390/mi13101700
Chicago/Turabian StyleWang, Lixun, Yuejun Zhang, Zhecheng Guo, Zhixin Wu, Xinhui Chen, and Shimin Du. 2022. "Reservoir Computing-Based Design of ZnO Memristor-Type Digital Identification Circuits" Micromachines 13, no. 10: 1700. https://doi.org/10.3390/mi13101700
APA StyleWang, L., Zhang, Y., Guo, Z., Wu, Z., Chen, X., & Du, S. (2022). Reservoir Computing-Based Design of ZnO Memristor-Type Digital Identification Circuits. Micromachines, 13(10), 1700. https://doi.org/10.3390/mi13101700