A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Droplet Generation Setups
2.2. Pump Characterization
2.3. Droplet Rate Measurements
2.4. Droplet Size Measurements
2.5. Flow Rate Measurements
2.6. Numerical Simulation of Negative Pressure Droplet Generation
2.7. Droplet Content Manipulation
2.8. Cell Spheroid Production
2.9. Viability Measurements
2.10. Albumin Secretion
3. Results
3.1. Pump Characterization
3.2. Characterization of Droplet Generation
3.2.1. Single-Pump Operation
3.2.2. Dual-Pump Setup for Size Tuning
3.2.3. Three-Pump Setup for Droplet Composition Manipulation
3.2.4. Single-Pump Setup for Microtissue Production in Biosafety Cabinet
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mashaghi, S.; Abbaspourrad, A.; Weitz, D.A.; van Oijen, A.M. Droplet Microfluidics: A Tool for Biology, Chemistry and Nanotechnology. Trends Analyt. Chem. 2016, 82, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Joensson, H.N.; Andersson Svahn, H. Droplet Microfluidics--a Tool for Single-Cell Analysis. Angew. Chem. Int. Ed. Engl. 2012, 51, 12176–12192. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Howes, P.D.; eMello, A.J. Recent Advances in Droplet Microfluidics. Anal. Chem. 2020, 92, 132–149. [Google Scholar] [CrossRef]
- Holtze, C.; Rowat, A.C.; Agresti, J.J.; Hutchison, J.B.; Angilè, F.E.; Schmitz, C.H.J.; Köster, S.; Duan, H.; Humphry, K.J.; Scanga, R.A.; et al. Biocompatible Surfactants for Water-in-Fluorocarbon Emulsions. Lab Chip 2008, 8, 1632–1639. [Google Scholar] [CrossRef]
- Baret, J.-C. Surfactants in Droplet-Based Microfluidics. Lab Chip 2012, 12, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Langer, K.; Joensson, H.N. Rapid Production and Recovery of Cell Spheroids by Automated Droplet Microfluidics. SLAS Technol. 2020, 25, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.M.; Mazutis, L.; Akartuna, I.; Tallapragada, N.; Veres, A.; Li, V.; Peshkin, L.; Weitz, D.A.; Kirschner, M.W. Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell 2015, 161, 1187–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zilionis, R.; Nainys, J.; Veres, A.; Savova, V.; Zemmour, D.; Klein, A.M.; Mazutis, L. Single-Cell Barcoding and Sequencing Using Droplet Microfluidics. Nat. Protoc. 2017, 12, 44–73. [Google Scholar] [CrossRef]
- Yao, L.; Shabestary, K.; Björk, S.M.; Asplund-Samuelsson, J.; Joensson, H.N.; Jahn, M.; Hudson, E.P. Pooled CRISPRi Screening of the Cyanobacterium Synechocystis Sp PCC 6803 for Enhanced Industrial Phenotypes. Nat. Commun. 2020, 11, 1666. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, H.; Zhuang, S.; Goda, K. Droplet Flow Cytometry for Single-Cell Analysis. RSC Adv. 2021, 11, 20944–20960. [Google Scholar] [CrossRef]
- Periyannan Rajeswari, P.K.; Soderberg, L.M.; Yacoub, A.; Leijon, M.; Andersson Svahn, H.; Joensson, H.N. Multiple Pathogen Biomarker Detection Using an Encoded Bead Array in Droplet PCR. J. Microbiol. Methods 2017, 139, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bai, R.; Zhao, Z.; Tao, L.; Ma, M.; Ji, Z.; Jian, M.; Ding, Z.; Dai, X.; Bao, F.; et al. Application of Droplet Digital PCR to Detect the Pathogens of Infectious Diseases. Biosci. Rep. 2018, 38, BSR20181170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, H.E.; Sengupta, S.; Harish, A.V.; Soares, R.R.G.; Joensson, H.N.; Margulis, W.; Russom, A.; Laurell, F. A Lab-in-a-Fiber Optofluidic Device Using Droplet Microfluidics and Laser-Induced Fluorescence for Virus Detection. Sci. Rep. 2022, 12, 3539. [Google Scholar] [CrossRef]
- Wang, J.-H.; Lee, G.-B. Formation of Tunable, Emulsion Micro-Droplets Utilizing Flow-Focusing Channels and a Normally-Closed Micro-Valve. Micromachines 2013, 4, 306–320. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Ye, S.; Chen, D.; Xie, B.; Hu, R.; Qiao, Y.; Yu, Y.; Yu, H.; Zheng, X.; Lan, Y.; et al. Tunable and Contamination-Free Injection with Microfluidics by Stepinjection. Anal. Chem. 2021, 93, 13112–13117. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.F.; Zhang, Y.; Ho, Y.-P.; Chiu, Y.-L.; Jung, Y.; Leong, K.W. Rapid Formation of Multicellular Spheroids in Double-Emulsion Droplets with Controllable Microenvironment. Sci. Rep. 2013, 3, 3462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Melin, M.; Jiang, K.; Trossbach, M.; Badadamath, B.; Langer, K.; Winkeljann, B.; Lieleg, O.; Hong, J.; Joensson, H.N.; et al. Immune-modulating Mucin Hydrogel Microdroplets for the Encapsulation of Cell and Microtissue. Adv. Funct. Mater. 2021, 14, 2105967. [Google Scholar] [CrossRef]
- Jang, M.; Koh, I.; Lee, S.J.; Cheong, J.-H.; Kim, P. Droplet-Based Microtumor Model to Assess Cell-ECM Interactions and Drug Resistance of Gastric Cancer Cells. Sci. Rep. 2017, 7, 41541. [Google Scholar] [CrossRef] [Green Version]
- Sart, S.; Tomasi, R.F.-X.; Barizien, A.; Amselem, G.; Cumano, A.; Baroud, C.N. Mapping the Structure and Biological Functions within Mesenchymal Bodies Using Microfluidics. Sci. Adv. 2020, 6, eaaw7853. [Google Scholar] [CrossRef] [Green Version]
- Spitkovsky, D.; Lemke, K.; Förster, T.; Römer, R.; Wiedemeier, S.; Hescheler, J.; Sachinidis, A.; Gastrock, G. Generation of Cardiomyocytes in Pipe-Based Microbioreactor Under Segmented Flow. Cell. Physiol. Biochem. 2016, 38, 1883–1896. [Google Scholar] [CrossRef]
- Periyannan Rajeswari, P.K.; Joensson, H.N.; Andersson-Svahn, H. Droplet Size Influences Division of Mammalian Cell Factories in Droplet Microfluidic Cultivation. Electrophoresis 2017, 38, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Trossbach, M.; Åkerlund, E.; Langer, K.; Seashore-Ludlow, B.; Joensson, H.N. High-Throughput Cell Spheroid Production and Assembly Analysis by Microfluidics and Deep Learning. bioRxiv 2022. [Google Scholar] [CrossRef]
- Chong, Z.Z.; Tan, S.H.; Gañán-Calvo, A.M.; Tor, S.B.; Loh, N.H.; Nguyen, N.-T. Active Droplet Generation in Microfluidics. Lab Chip 2016, 16, 35–58. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Wang, L. Passive and Active Droplet Generation with Microfluidics: A Review. Lab Chip 2016, 17, 34–75. [Google Scholar] [CrossRef] [PubMed]
- Anna, S.L.; Bontoux, N.; Stone, H.A. Formation of Dispersions Using “flow Focusing” in Microchannels. Appl. Phys. Lett. 2003, 82, 364–366. [Google Scholar] [CrossRef]
- Chen, X.; Glawdel, T.; Cui, N.; Ren, C.L. Model of Droplet Generation in Flow Focusing Generators Operating in the Squeezing Regime. Microfluid. Nanofluidics 2015, 18, 1341–1353. [Google Scholar] [CrossRef]
- Rahimi, M.; Shams Khorrami, A.; Rezai, P. Effect of Device Geometry on Droplet Size in Co-Axial Flow-Focusing Microfluidic Droplet Generation Devices. Colloids Surf. A Physicochem. Eng. Asp. 2019, 570, 510–517. [Google Scholar] [CrossRef]
- Lashkaripour, A.; Rodriguez, C.; Mehdipour, N.; Mardian, R.; McIntyre, D.; Ortiz, L.; Campbell, J.; Densmore, D. Machine Learning Enables Design Automation of Microfluidic Flow-Focusing Droplet Generation. Nat. Commun. 2021, 12, 25. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Padovani, J.I.; Howe, R.T.; Anis, Y.H. Modeling of Droplet Generation in a Microfluidic Flow-Focusing Junction for Droplet Size Control. Micromachines 2021, 12, 590. [Google Scholar] [CrossRef]
- Filatov, N.A.; Evstrapov, A.A.; Bukatin, A.S. Negative Pressure Provides Simple and Stable Droplet Generation in a Flow-Focusing Microfluidic Device. Micromachines 2021, 12, 662. [Google Scholar] [CrossRef]
- Helgason, C.D.; Miller, C.L. Basic Cell Culture Protocols; Humana Press: New York, NY, USA, 2012; ISBN 9781627031271. [Google Scholar]
- Philippeos, C.; Hughes, R.D.; Dhawan, A.; Mitry, R.R. Introduction to Cell Culture. In Human Cell Culture Protocols; Mitry, R.R., Hughes, R.D., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 1–13. ISBN 9781617793677. [Google Scholar]
- Fujita, J. Cold Shock Response in Mammalian Cells. J. Mol. Microbiol. Biotechnol. 1999, 1, 243–255. [Google Scholar]
- Edelstein, A.D.; Tsuchida, M.A.; Amodaj, N.; Pinkard, H.; Vale, R.D.; Stuurman, N. Advanced Methods of Microscope Control Using μManager Software. J. Biol. Methods 2014, 1, e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karbaschi, M.; Shahi, P.; Abate, A.R. Rapid, Chemical-Free Breaking of Microfluidic Emulsions with a Hand-Held Antistatic Gun. Biomicrofluidics 2017, 11, 044107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köster, S.; Angilè, F.E.; Duan, H.; Agresti, J.J.; Wintner, A.; Schmitz, C.; Rowat, A.C.; Merten, C.A.; Pisignano, D.; Griffiths, A.D.; et al. Drop-Based Microfluidic Devices for Encapsulation of Single Cells. Lab Chip 2008, 8, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Bazile, J.-P.; Aguilar, F.; Galliero, G.; Muñoz-Rujas, N.; Montero, E.; Boned, C. High Pressure Viscosity Measurements of the Hydrofluoroether Fluid HFE-7500. In Proceedings of the PPEPPD 2016, Porto, Portugal, 22–26 May 2016; Volume 36. [Google Scholar]
- Chen, J.-S.; Jiang, J.-H. Droplet Microfluidic Technology: Mirodroplets Formation and Manipulation. Chin. J. Anal. Chem. 2012, 40, 1293–1300. [Google Scholar] [CrossRef]
- Bachmann, A.; Moll, M.; Gottwald, E.; Nies, C.; Zantl, R.; Wagner, H.; Burkhardt, B.; Sánchez, J.J.M.; Ladurner, R.; Thasler, W.; et al. 3D Cultivation Techniques for Primary Human Hepatocytes. Microarrays 2015, 4, 64–83. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trossbach, M.; de Lucas Sanz, M.; Seashore-Ludlow, B.; Joensson, H.N. A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator. Micromachines 2022, 13, 1823. https://doi.org/10.3390/mi13111823
Trossbach M, de Lucas Sanz M, Seashore-Ludlow B, Joensson HN. A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator. Micromachines. 2022; 13(11):1823. https://doi.org/10.3390/mi13111823
Chicago/Turabian StyleTrossbach, Martin, Marta de Lucas Sanz, Brinton Seashore-Ludlow, and Haakan N. Joensson. 2022. "A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator" Micromachines 13, no. 11: 1823. https://doi.org/10.3390/mi13111823
APA StyleTrossbach, M., de Lucas Sanz, M., Seashore-Ludlow, B., & Joensson, H. N. (2022). A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator. Micromachines, 13(11), 1823. https://doi.org/10.3390/mi13111823