Combined Effect of TID Radiation and Electrical Stress on NMOSFETs
Abstract
:1. Introduction
2. Experiments
3. Experimental Results and Discussion
3.1. Initial I–V Characteristics of the Device
3.2. Combined Effect of Radiation and Electrical Stress
3.2.1. Effect of Radiation on I–V Characteristics
3.2.2. Combined Effect of Radiation and Electrical Stress on Long-Term Reliability
3.3. Effect of Structure on Combined Effect of Radiation and Electrical Stress
3.3.1. Effect of Gate Width and STI Parasitic Gate
3.3.2. Effect of Gate Length and Gate Edge Effect
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, S.; Shi, J.; Wang, J.L. Satellite on-board failure statistics and analysis. Spacecr. Eng. 2010, 19, 4l–46. [Google Scholar]
- Oldham, T.R.; Mclean, F.B. Total ionizing dose effects in MOS oxides and devices. IEEE. Trans. Nucl. Sci. 2003, 50, 483–499. [Google Scholar] [CrossRef] [Green Version]
- Schwank, J.R.; Shaneyfelt, M.R.; Fleetwood, D.M.; Felix, J.A.; Dodd, P.E.; Paillet, P.; Cavrois, V.F. Radiation effects in MOS oxides. IEEE. Trans. Nucl. Sci. 2008, 55, 1833–1853. [Google Scholar] [CrossRef]
- Faccio, F.; Cervelli, G. Radiation-induced edge effects in deep submicron CMOS transistors. IEEE. Trans. Nucl. Sci. 2005, 52, 2413–2420. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Liu, Y.; Zhang, Y. Total-ionizing-dose induced enhanced hot-carrier injection effect in the 130-nm partially depleted SOI I/O nMOSFETs. Jpn. J. Appl. Phys. 2020, 59, 031001. [Google Scholar] [CrossRef]
- Fleetwood, D.M. Total-Ionizing-Dose effects, border traps, and 1/f noise in emerging MOS technologies. IEEE. Trans. Nucl. Sci. 2020, 67, 1216–1240. [Google Scholar] [CrossRef]
- Schroder, D.K.; Babcock, J.A. Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing. J. Appl. Phys. 2003, 94, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ullmann, B.; Jech, M.; Tyaginov, S.; Waltl, M.; Lllarionov, Y.Y.; Grill, A.; Puschkarsky, K.; Reisinger, H.; Grasser, T. The impact of mixed negative bias temperature instability and hot carrier stress on single oxide defects. IEEE. Inter. Reliab. Phys. Symp. 2017, XT-10.1–XT-10.6. [Google Scholar]
- Jech, M.; Ullmann, B.; Rzepa, G.; Tyaginov, S.; Grill, A.; Waltl, M.; Jabs, D.; Jungemann, C.; Grasser, T. Impact of mixed negative bias temperature instability and hot carrier stress on MOSFET characteristics—Part II: Theory. IEEE. Trans. Elec. Dev. 2019, 66, 241–248. [Google Scholar] [CrossRef]
- Zhou, X.J.; Fleetwood, D.M.; Felix, J.A.; Gusev, E.P.; Emic, D. Bias-temperature instabilities and radiation effects in MOS devices. IEEE. Trans. Nucl. Sci. 2006, 52, 2231–2238. [Google Scholar] [CrossRef]
- Zafar, S.; Kim, Y.; Narayanan, V.; Cabral, C.; Paruchuri, V.; Doris, B.; Stathis, J.; Callegari, A.; Chudzik, M. A Comparative Study of NBTI and PBTI (Charge Trapping) in SiO2/HfO2 Stacks with FUSI, TiN, Re Gates. Symp. VLSI. Technol. Dig. Tech. Pap. 2006, 23–25. [Google Scholar]
- Waldhoer, D.; El-Sayed, A.M.B.; Wimmer, Y.; Waltl, M.; Grasser, T. Atomistic Modeling of Oxide Defects. Noise. Nanosc. Semicon. Dev. 2020, 609–648. [Google Scholar]
- Onishi, K.; Choi, R.; Kang, S.K.; Cho, H.J.; Kim, Y.H.; Nieh, R.E.; Han, J.; Krishnan, S.A.; Akbar, M.S.; Lee, J.C. Bias-temperature instabilities of polysilicon gate HfO/sub2/ MOSFETs. IEEE. Trans. Nucl. Sci. 2003, 50, 1517–1524. [Google Scholar] [CrossRef]
- Sa, N.; Kang, J.F.; Yang, H.; Liu, X.Y.; He, Y.D.; Han, R.Q.; Ren, C.; Yu, H.Y.; Chan, D.S.H.; Kwong, D.L. Mechanism of positive-bias temperature instability in sub-1-nm TaN/HfN/HfO2 gate stack with low preexisting traps. IEEE Elec. Dev. Lett. 2005, 26, 610–612. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Parihar, N.; Goel, N.; Mahapatra, S. A Comprehensive DC and AC PBTI Modeling Framework for HKMG n-MOSFETs. IEEE Trans. Elec. Dev. 2017, 64, 1474–1481. [Google Scholar] [CrossRef]
- Ortiz-Conde, A.; Sánchez, F.J.G.; Liou, J.J.; Cerdeira, A.; Estrada, M.; Yue, Y. A review of recent MOSFET threshold voltage extraction methods. Microelectron. Reliab. 2002, 42, 583–596. [Google Scholar]
- Hughes, H.L.; Benedetto, J.M. Radiation effects and hardening of MOS technology: Devices and circuits. IEEE. Trans. Nucl. Sci. 2003, 50, 500–521. [Google Scholar]
- Li, N.L.; Yu, Q.; Wang, K.; Yu, W.H.; Dong, Z.X. Study on simulation models for γ total dose radiation effects in MOSFET structure. Microelectronics 2013, 43, 445–448. [Google Scholar]
- Franco, J.; Kaczer, B.; Mukhopadhyay, S.; Duban, P.; Weckx, P.; Roussel, P.J.; Chiarella, T.; Ragnarsson, L.A.; Troiman, L.; Horiguchi, N.; et al. Statistical model of the NBTI-induced threshold voltage, subthreshold swing, and transconductance degradations in advanced p-FinFETs. IEEE Int. Elec. Dev. Meet. 2016, 15.3.1–15.3.4. [Google Scholar]
- Mukhopadhyay, S.; Joshi, K.; Chaudhary, V.; Goel, N.; De, S.; Pandey, R.; Murali, K.; Mahapatra, S. Trap Generation in IL and HK layers during BTI / TDDB stress in scaled HKMG N and P MOSFETs. IEEE Int. Reliab. Phys. Symp. 2014, GD.3.1–GD.3.11. [Google Scholar]
- Griscom, D.L. Hydrogen model for radiation-induced interface states in SiO2-on-Si Structures: A review of the evidence. J. Electron. Mater. 1992, 21, 763–767. [Google Scholar] [CrossRef]
- Parihar, N.; Goel, N.; Chaudhary, A.; Mahapatra, S. A Modeling Framework for NBTI Degradation Under Dynamic Voltage and Frequency Scaling. IEEE Trans. Elec. Dev. 2016, 63, 946–953. [Google Scholar] [CrossRef]
- Robertson, J.; Xiong, K.; Tse, K.Y. Importance of Oxygen Vacancies in High K Gate Dielectrics. IEEE Inter. Confer. Integr. Circ. Des. Tech. 2007, 1–4. [Google Scholar]
- Kerber, A.; Cartier, E.; Pantisano, L.; Degraeve, R.; Kauerauf, T.; Kim, Y.; Hou, A.; Groeseneken, G.; Maes, H.E.; Schwalke, U. Origin of the threshold voltage instability in SiO2/HfO2 dual layer gate dielectrics. IEEE Elec. Dev. Lett. 2003, 24, 87–89. [Google Scholar] [CrossRef]
- Abliz, A.; Xue, X.X.; Liu, X.Q.; Li, G.L.; Tang, L.M. Rational design of hydrogen and nitrogen co-doped ZnO for high performance thin-film transistors. Appl. Phys. Lett. 2021, 118, 123504. [Google Scholar] [CrossRef]
- Abliz, A.; Xu, L.; Wan, D.; Duan, H.M.; Wang, J.L.; Wang, C.L.; Luo, S.J. Effects of yttrium doping on the electrical performances and stability of ZnO thin-film transistors. Appl. Surf. Sci. 2019, 475, 565–570. [Google Scholar] [CrossRef]
- Chung, S.S.; Yeh, C.H.; Feng, H.J.; Lai, C.S.; Yang, J.J.; Chen, C.C.; Jin, Y.; Chen, S.C.; Liang, M.S. Impact of STI on the reliability of narrow-width pMOSFETs with advanced ALD N/O gate stack. IEEE Trans. Dev. Mater. Reliab. 2006, 6, 95–101. [Google Scholar] [CrossRef]
- Cui, J.W.; Zheng, Q.W.; Yu, D.Z.; Zhou, H.; Su, D.D.; Ma, T.; Wei, Y.; Yu, X.F.; Guo, Q. Effect of channel width on NBTI in 65nm PMOSFET. Tien. Tzu. Hsueh. Pao. Acta. Elec. Sinica. 2018, 46, 1128–1132. [Google Scholar]
- Jin, L.; Xu, M.Z. Effect of channel length on NBTI in sub-100nm CMOS technology. IEEE Int. Nanoelectron. Conf. 2008, 597–600. [Google Scholar]
- Lu, C.Y.; Lin, H.C.; Lee, Y.J. Dynamic NBTI characteristics of PMOSFETs with PE-SiN capping. Microelectron. Reliab. 2007, 47, 924–929. [Google Scholar] [CrossRef]
- Cao, Y.R.; Ma, X.H.; Hao, Y.; Tian, W.C. Effect of channel length and width on NBTI in ultradeep sub-micron PMOSFETs. Chinese. Phys. Lett. 2010, 27, 037301. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Wang, M.; Zheng, X.; Zhang, E.; Lv, L.; Wang, L.; Ma, M.; Lv, H.; Wang, Z.; Wang, Y.; et al. Combined Effect of TID Radiation and Electrical Stress on NMOSFETs. Micromachines 2022, 13, 1860. https://doi.org/10.3390/mi13111860
Cao Y, Wang M, Zheng X, Zhang E, Lv L, Wang L, Ma M, Lv H, Wang Z, Wang Y, et al. Combined Effect of TID Radiation and Electrical Stress on NMOSFETs. Micromachines. 2022; 13(11):1860. https://doi.org/10.3390/mi13111860
Chicago/Turabian StyleCao, Yanrong, Min Wang, Xuefeng Zheng, Enxia Zhang, Ling Lv, Liang Wang, Maodan Ma, Hanghang Lv, Zhiheng Wang, Yongkun Wang, and et al. 2022. "Combined Effect of TID Radiation and Electrical Stress on NMOSFETs" Micromachines 13, no. 11: 1860. https://doi.org/10.3390/mi13111860
APA StyleCao, Y., Wang, M., Zheng, X., Zhang, E., Lv, L., Wang, L., Ma, M., Lv, H., Wang, Z., Wang, Y., Tian, W., Ma, X., & Hao, Y. (2022). Combined Effect of TID Radiation and Electrical Stress on NMOSFETs. Micromachines, 13(11), 1860. https://doi.org/10.3390/mi13111860