Development of a Highly Specific Fluoroimmunoassay for the Detection of Doxycycline Residues in Water Environmental and Animal Tissue Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Preparation of the Labeled Antibodies
2.3. QD-cFIA Procedure Used for DOX Detection
2.4. Optimization of Experimental Conditions
2.5. Standard Curve and Specificity of QD-cFIA
2.6. Accuracy and Precision Studies
2.7. The Correlation of QD-cFIA with HPLC
3. Results and Discussion
3.1. Characterization of the QD-Labeled Antibodies
3.2. Optimization of QD-cFIA
3.3. Standard Curve and Specificity of QD-cFIA
3.4. Accuracy and Precision
3.5. Correction of Immunoassays and HPLC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, C.Q.; Zhang, N. Enzyme-amplified lanthanide luminescence based on complexation reaction--a new technique for the determination of doxycycline. J. Pharmaceut. Biomed. 2004, 35, 1301–1306. [Google Scholar] [CrossRef]
- Le, T.; Zhao, Z.; Wei, W.; Bi, D. Development of a highly sensitive and specific monoclonal antibody-based enzyme-linked immunosorbent assay for determination of doxycycline in chicken muscle, liver and egg. Food Chem. 2012, 134, 2442–2446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.L.; Zhang, L.F.; Zhang, K.Y.; Wang, X.Y.; Xue, F.Q. Determination of tetracyclines and their epimers in agricultural soil fertilized with swine manure by ultra-high-performance liquid chromatography tandem mass spectrometry. J. Integr. Agric. 2012, 11, 1189–1198. [Google Scholar] [CrossRef]
- Lyu, N.; Yin, F.H.; Chen, Y.; Gao, Z.J.; Liu, Y.; Shi, L. Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity. J. Appl. Ecol. 2015, 26, 3337–3344. [Google Scholar]
- Yan, Q.; Li, X.; Ma, B.; Zou, Y.; Wang, Y.; Liao, X.; Liang, J.; Mi, J.; Wu, Y. Different Concentrations of Doxycycline in Swine Manure Affect the Microbiome and Degradation of Doxycycline Residue in Soil. Front. Microbiol. 2018, 9, 3129. [Google Scholar] [CrossRef]
- Aga, D.S.; O’Connor, S.; Ensley, S.; Payero, J.O.; Snow, D.; Tarkalson, D. Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry. J. Agric. Food Chem. 2005, 53, 7165–7171. [Google Scholar] [CrossRef]
- Girma, K.; Tilahun, Z.; Haimanot, D.; Tadele, T. Review on detection of antimicrobial residues in raw bulk milk in dairy farms. J. Basic. Appl. Sci. 2014, 6, 87–97. [Google Scholar]
- Cinquina, A.L.; Longo, F.; Anastasi, G.; Giannetti, L.; Cozzani, R. Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle. J. Chromatogr. A 2003, 987, 227–233. [Google Scholar] [CrossRef]
- Xu, N.; Dong, J.; Zhou, W.; Liu, Y.T.; Ai, X.H. Determination of Doxycycline, 4-epidoxycycline, and 6-epidoxycycline in Aquatic Animal Muscle Tissue by an Optimized Extraction Protocol and Ultra-performance Performance Liquid Chromatography with Ultraviolet Detection. Anal. Lett. 2019, 52, 452–464. [Google Scholar] [CrossRef]
- Gajda, A.; Posyniak, A.; Zmudzki, J.; Tomczyk, G. Determination of doxycycline in chicken fat by liquid chromatography with UV detection and liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2013, 928, 113–120. [Google Scholar] [CrossRef]
- Spielmeyer, A.; Ahlborn, J.; Hamscher, G. Simultaneous determination of 14 sulfonamides and tetracyclines in biogas plants by liquid-liquid-extraction and liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 2513–2524. [Google Scholar] [CrossRef] [PubMed]
- da Silveira, V.G.; Oliveira, M.; de Almeida, C.A.A.; Hoff, R.; Mallmann, C.A. Liquid Chromatography-Tandem Mass Spectrometry Determination and Depletion Profile of Chlortetracycline, Doxycycline, and Oxytetracycline in Broiler Chicken Muscle After Oral Administration. Food Anal. Methods 2018, 11, 2181–2194. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.L.; Yang, S.; Hu, Q.W.; Cheng, H.B.; Liu, H.Y.; Qiu, Y.S. High-performance liquid chromatography using pressurized liquid extraction for the determination of seven tetracyclines in egg, fish and shrimp. J. Chromatogr. B 2013, 15, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Tao, Y.; Chen, D.; Wang, Y.; Yuan, Z. Development of an HPLC–UV method for the simultaneous determination of tetracyclines in muscle and liver of porcine, chicken and bovine with accelerated solvent extraction. Food Chem. 2011, 124, 1131–1138. [Google Scholar] [CrossRef]
- Le, T.; Yu, H.; Guo, Y.; Ngom, B.; Shen, Y.; Bi, D. Development of an indirect competitive ELISA for the detection of doxycycline residue in animal edible tissues. Food Agric. Immunol. 2009, 20, 111–124. [Google Scholar] [CrossRef]
- Le, T.; Yu, H.; Wang, X.; Ngom, B.; Guo, Y.; Bi, D. Development and validation of an immunochromatographic test strip for rapid detection of doxycycline residues in swine muscle and liver. Food Agric. Immunol. 2011, 22, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Le, T.; Yi, S.; Wei, S.; Liu, J. A competitive dual-label time-resolved fluoroimmunoassay for the simultaneous detection of chlortetracycline and doxycycline in animal edible tissues. Food Agric. Immunol. 2015, 26, 804–812. [Google Scholar] [CrossRef]
- Zhu, Y.; Chao, J.; Zhu, F.; Zhu, N.; Zhang, Q.; Gyimah, E.; Yakubu, S.; Zou, Y.; Zhang, Z. Ratiometric fluorescence immunoassay based on FAM-DNA-functionalized CdSe/ZnS QDs for the sensitive detection of tetrabromobisphenol A in foodstuff and the environment. Anal. Bioanal. Chem. 2020, 412, 3605–3613. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, B.; Zhang, Y.; Wang, J.; Lu, Y.; Deng, J.; Wang, S. Application of CdTe/CdS/ZnS quantum dot in immunoassay for aflatoxin B1 and molecular modeling of antibody recognition. Anal. Chim. Acta 2019, 1047, 139–149. [Google Scholar] [CrossRef]
- Esteve-Turrillas, F.A.; Abad-Somovilla, A.; Quinones-Reyes, G.; Agullo, C.; Mercader, J.V.; Abad-Fuentes, A. Monoclonal antibody-based immunoassays for cyprodinil residue analysis in QuEChERS-based fruit extracts. Food Chem. 2015, 187, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Le, T.; Zhu, L.; Yu, H. Dual-label quantum dot-based immunoassay for simultaneous determination of Carbadox and Olaquindox metabolites in animal tissues. Food Chem. 2016, 199, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, L.; Sun, Q.; Zhang, Z.; Le, T. Immunochromatographic Assay for Simultaneous and Quantitative Detection of 3-Methyl-Quinoxaline-2-Carboxylic Acid and Quinoxaline-2-Carboxylic Acid Residues in Animal Tissues Based on Highly Luminescent Quantum Dot Beads. Food Anal. Methods 2018, 11, 334–342. [Google Scholar] [CrossRef]
- Le, T.; Xie, Y.; Zhu, L.Q.; Zhang, L. Rapid and sensitive detection of 3-amino-2-oxazolidinone using a quantum dot-based immunochromatographic fluorescent biosensor. J. Agric. Food Chem. 2016, 64, 8678–8683. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, L.; Yang, X.; Le, T. Development of a quantum dot-based immunochromatography test strip for rapid screening of oxytetracycline and 4-epioxytetracycline in edible animal tissues. Food Addit. Contam. A 2017, 34, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, Y.; Meng, X.; Qiao, B.; Hu, P.; Meng, X.; Lu, S.; Ren, H.; Liu, Z.; Zhou, Y. Fluorescence-linked immunosorbent assay for detection of phenanthrene and its homolog. Anal. Biochem. 2018, 547, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Ding, Y.; Yang, J.; Ma, M.; Shi, H.; Wang, M. Direct competitive fluoroimmunoassays for detection of imidaclothiz in environmental and agricultural samples using quantum dots and europium as labels. Sci. Total Environ. 2017, 583, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Grande-Martínez, Á.; Moreno-González, D.; Arrebola-Liébanas, F.J.; Garrido-Frenich, A.; García-Campaña, A.M. Optimization of a modified QuEChERS method for the determination of tetracyclines in fish muscle by UHPLC-MS/MS. J. Pharmaceut. Biomed. 2018, 155, 27–32. [Google Scholar] [CrossRef]
Method | Antibody Type | IC50 (ng mL−1) | LOD (ng mL−1) | Sample | References |
---|---|---|---|---|---|
Enzyme-linked immunosorbent assay | Monoclonal antibody | 1.32 | 0.14 | liver, muscle and egg | [2] |
Enzyme-linked immunosorbent assay | Polyclonal antibody | 8.74 | 1.96 | Liver and muscle | [15] |
Immunochromatographic test strip | Polyclonal antibody | 22.0 | 7.0 | Liver and muscle | [16] |
Time-resolved fluroimmunoassay | Polyclonal antibody | 1.06 | 0.04 | liver, muscle and egg | [17] |
QD-cFIA | Monoclonal antibody | 0.35 | 0.039 | Chicken (liver, muscle), fish muscle, tap water, river, water and contaminated water | This work |
Compound | IC50 (ng m L−1) | CR (%) |
---|---|---|
DOX | 0.35 | 100 |
4-epi-doxycycline | 0.68 | 51.5 |
Oxytetracycline | >10,000 | <0.01 |
4-epi- oxytetracycline | >10,000 | <0.01 |
Tetracycline | >10,000 | <0.01 |
4-epi-tetracycline | >10,000 | <0.01 |
Chlortetracycline | >10,000 | <0.01 |
4-epi-chlortetracycline chlortetracycline | >10,000 | <0.01 |
Demeclocycline | >10,000 | <0.01 |
Sample | Spiked (ng mL−1, ng g−1) | Mean Recovery ±SD (%) | RSD (%) |
---|---|---|---|
Chicken liver | 150 | 105.4 ± 10.4 | 9.9 |
300 | 98.7 ± 10.8 | 10.9 | |
600 | 88.5 ± 9.7 | 11.0 | |
Chicken muscle | 50 | 98.8 ± 6.6 | 6.7 |
100 | 109.8 ± 9.4 | 8.6 | |
200 | 108.4 ± 7.5 | 6.9 | |
Fish muscle | 100 | 81.3 ± 9.7 | 11.9 |
200 | 91.8 ± 7.2 | 7.8 | |
400 | 109.3 ± 11.2 | 10.3 | |
Tap water | 10 | 102.3 ± 6.4 | 6.3 |
50 | 103.1 ± 7.6 | 7.4 | |
100 | 98.8 ± 4.6 | 4.7 | |
River water | 10 | 103.3 ± 4.3 | 4.2 |
50 | 101.5 ± 9.5 | 9.4 | |
100 | 99.6 ± 11.2 | 11.2 | |
Contaminated water | 10 | 106.3 ± 9.6 | 9.0 |
50 | 100.8 ± 7.9 | 7.8 | |
100 | 97.3 ± 9.5 | 9.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.; Xu, R.; Yang, L.; Xie, Y. Development of a Highly Specific Fluoroimmunoassay for the Detection of Doxycycline Residues in Water Environmental and Animal Tissue Samples. Micromachines 2022, 13, 1864. https://doi.org/10.3390/mi13111864
Le T, Xu R, Yang L, Xie Y. Development of a Highly Specific Fluoroimmunoassay for the Detection of Doxycycline Residues in Water Environmental and Animal Tissue Samples. Micromachines. 2022; 13(11):1864. https://doi.org/10.3390/mi13111864
Chicago/Turabian StyleLe, Tao, Rongli Xu, Lulan Yang, and Yong Xie. 2022. "Development of a Highly Specific Fluoroimmunoassay for the Detection of Doxycycline Residues in Water Environmental and Animal Tissue Samples" Micromachines 13, no. 11: 1864. https://doi.org/10.3390/mi13111864
APA StyleLe, T., Xu, R., Yang, L., & Xie, Y. (2022). Development of a Highly Specific Fluoroimmunoassay for the Detection of Doxycycline Residues in Water Environmental and Animal Tissue Samples. Micromachines, 13(11), 1864. https://doi.org/10.3390/mi13111864