Surface Modification of Polymethylmethacrylate (PMMA) by Ultraviolet (UV) Irradiation and IPA Rinsing
Abstract
:1. Introduction
2. Ultraviolet (UV) Surface Treatment
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reeja-Jayan, B.; Kovacik, P.; Yang, R.; Sojoudi, H.; Ugur, A.; Kim, D.H.; Petruczok, C.D.; Wang, X.; Liu, A.; Gleason, K.K. A Route Towards Sustainability Through Engineered Polymeric Interfaces. Adv. Mater. Interfaces 2014, 1, 1400117. [Google Scholar] [CrossRef]
- Govindarajan, T.; Shandas, R. A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent Devices. Polymers 2014, 6, 2309–2331. [Google Scholar] [CrossRef]
- Ogonczyk, D.; Jankowski, P.; Garstecki, P. A Method for Simultaneous Polishing and Hydrophobization of Polycarbonate for Microfluidic Applications. Polymers 2020, 12, 2490. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Jarad, N.A.; Khan, S.; Didar, T.F. Bio-functionalization of microfluidic platforms made of thermoplastic materials: A review. Anal. Chim. Acta 2022, 1209, 339283. [Google Scholar] [CrossRef]
- Agha, A.; Waheed, W.; Alamoodi, N.; Mathew, B.; Alnaimat, F.; Abu-Nada, E.; Abderrahmane, A.; Alazzam, A. A Review of Cyclic Olefin Copolymer Applications in Microfluidics and Microdevices. Macromol. Mater. Eng. 2022, 307, 2200053. [Google Scholar] [CrossRef]
- Van Midwoud, P.M.; Janse, A.; Merema, M.T.; Groothuis, G.M.; Verpoorte, E. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem. 2012, 84, 3938–3944. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.B.; Hanson, R.L.; Almughamsi, H.M.; Pang, C.; Fish, T.R.; Woolley, A.T. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal. Chem. 2020, 92, 150–168. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.J.; Geist, J.; Locascio, L.E.; Gaitan, M.; Rao, M.V.; Vreeland, W.N. Surface modification of poly(methyl methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis. Electrophoresis 2006, 27, 3788–3796. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Quijada, G.A.; Peytavi, R.; Nantel, A.; Roy, E.; Bergeron, M.G.; Dumoulin, M.M.; Veres, T. Surface modification of thermoplastics--towards the plastic biochip for high throughput screening devices. Lab Chip 2007, 7, 856–862. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Klapperich, C.M. Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices. Lab Chip 2007, 7, 876–882. [Google Scholar] [CrossRef]
- Schutte, J.; Freudigmann, C.; Benz, K.; Bottger, J.; Gebhardt, R.; Stelzle, M. A method for patterned in situ biofunctionalization in injection-molded microfluidic devices. Lab Chip 2010, 10, 2551–2558. [Google Scholar] [CrossRef] [PubMed]
- Saman, N.M.; Ahmad, M.H.; Buntat, Z. Application of Cold Plasma in Nanofillers Surface Modification for Enhancement of Insulation Characteristics of Polymer Nanocomposites: A Review. IEEE Access 2021, 9, 80906–80930. [Google Scholar] [CrossRef]
- Shuai, C.; Zan, J.; Yang, Y.; Peng, S.; Yang, W.; Qi, F.; Shen, L.; Tian, Z. Surface modification enhances interfacial bonding in PLLA/MgO bone scaffold. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110486. [Google Scholar] [CrossRef] [PubMed]
- Hoseinpour, V.; Noori, L.; Mahmoodpour, S.; Shariatinia, Z. A review on surface modification methods of poly(arylsulfone) membranes for biomedical applications. J. Biomater. Sci. Polym. Ed. 2021, 32, 906–965. [Google Scholar] [CrossRef] [PubMed]
- Trinh, K.T.L.; Thai, D.A.; Chae, W.R.; Lee, N.Y. Rapid Fabrication of Poly(methyl methacrylate) Devices for Lab-on-a-Chip Applications Using Acetic Acid and UV Treatment. ACS Omega 2020, 5, 17396–17404. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.-W.; Hromada, L.; Liu, J.; Kumar, P.; DeVoe, D.L. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 2007, 7, 499–505. [Google Scholar] [CrossRef]
- Raffi, A.A.; Rahman, M.A.; Salim, M.A.M.; Ismail, N.J.; Othman, M.H.D.; Ismail, A.F.; Bakhtiar, H. Surface treatment on polymeric polymethyl methacrylate (PMMA) core via dip-coating photopolymerisation curing method. Opt. Fiber Technol. 2020, 57, 102215. [Google Scholar] [CrossRef]
- Scheicher, S.R.; Krammer, K.; Fian, A.; Kargl, R.; Ribitsch, V.; Köstler, S. Patterned Surface Activation of Cyclo-Olefin Polymers for Biochip Applications. Period. Polytech. Chem. Eng. 2014, 58, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Piruska, A.; Nikcevic, I.; Lee, S.H.; Ahn, C.; Heineman, W.R.; Limbach, P.A.; Seliskar, C.J. The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 2005, 5, 1348–1354. [Google Scholar] [CrossRef]
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Rajendran, S.; Sivakumar, M.; Subadevi, R. Effect of salt concentration in poly(vinyl alcohol)-based solid polymer electrolytes. J. Power Sources 2003, 124, 225–230. [Google Scholar] [CrossRef]
- Sun, W.; Liu, W.; Wu, Z.; Chen, H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol. Rapid Commun. 2020, 41, e1900430. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Song, Z.; Li, J.; Peng, J.; Xu, X. Numerical Simulation of Transient Surface Charging of Polymer Surface under DC Corona Considering Plasma Chemistry. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 33–41. [Google Scholar] [CrossRef]
- Tomanik, M.; Kobielarz, M.; Filipiak, J.; Szymonowicz, M.; Rusak, A.; Mroczkowska, K.; Antonczak, A.; Pezowicz, C. Laser Texturing as a Way of Influencing the Micromechanical and Biological Properties of the Poly(L-Lactide) Surface. Materials 2020, 13, 3786. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kim, H.T. Effects of laser annealing on polymer sheets using a laser-diode with a wavelength of 408 nm. Mol. Cryst. Liq. Cryst. 2021, 735, 9–15. [Google Scholar] [CrossRef]
- Nemani, S.K.; Annavarapu, R.K.; Mohammadian, B.; Raiyan, A.; Heil, J.; Haque, M.A.; Abdelaal, A.; Sojoudi, H. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces 2018, 5, 1801247. [Google Scholar] [CrossRef]
- Giri, K.; Tsao, C.W. Recent Advances in Thermoplastic Microfluidic Bonding. Micromachines 2022, 13, 486. [Google Scholar] [CrossRef]
- Murakami, T.N.; Fukushima, Y.; Hirano, Y.; Tokuoka, Y.; Takahashi, M.; Kawashima, N. Surface modification of polystyrene and poly(methyl methacrylate) by active oxygen treatment. Colloids Surf. B Biointerfaces 2003, 29, 171–179. [Google Scholar] [CrossRef]
- Henry, A.C.; Tutt, T.J.; Galloway, M.; Davidson, Y.Y.; McWhorter, C.S.; Soper, S.A.; McCarley, R.L. Surface Modification of Poly(methyl methacrylate) Used in the Fabrication of Microanalytical Devices. Anal. Chem. 2000, 72, 5331–5337. [Google Scholar] [CrossRef]
- Eve, S.; Mohr, J. Study of the surface modification of the PMMA by UV-radiation. Procedia Eng. 2009, 1, 237–240. [Google Scholar] [CrossRef]
- Lin, T.Y.; Pfeiffer, T.T.; Lillehoj, P.B. Stability of UV/ozone-treated thermoplastics under different storage conditions for microfluidic analytical devices. RSC Adv. 2017, 7, 37374–37379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillborg, H.; Tomczak, N.; Olah, A.; Schonherr, H.; Vancso, G.J. Nanoscale Hydrophobic Recovery: A Chemical Force Microscopy Study of UV/Ozone-Treated Cross-Linked Poly(dimethylsiloxane). Langmuir 2004, 20, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Bhurke, A.S.; Askeland, P.A.; Drzal, L.T. Surface Modification of Polycarbonate by Ultraviolet Radiation and Ozone. J. Adhes. 2007, 83, 43–66. [Google Scholar] [CrossRef]
- Kildahl, N.K. Bond Energy Data Summarized. J. Chem. Educ. 1995, 72, 423–424. [Google Scholar] [CrossRef]
- Andrews, D.L. Electromagnetic Radiation. In Encryclopedia of Spectroscopy and Spectrometry, 3rd ed.; Academic Press: London, UK, 2017; pp. 427–431. [Google Scholar]
- Teare, D.O.H.; Ton-That, C.; Bradley, R.H. Surface characterization and ageing of ultraviolet-ozone-treated polymers using atomic force microscopy and x-ray photoelectron spectroscopy. Surf. Interface Anal. 2000, 29, 276–283. [Google Scholar] [CrossRef]
Dose [J/cm2] | Water Contact Angle [°] | ||||||
---|---|---|---|---|---|---|---|
Pristine | 0 h | 1 h | 24 h | 7 Days | 15 Days | 30 Days | |
1.5 | 70.9 ± 1.9 | 55.6 ± 3.1 | 57.2 ± 3.4 | 61.3 ± 3.3 | 63.1 ± 1.4 | 63.5 ± 1.8 | 64.2 ± 3.5 |
3 | 71.5 ± 2.3 | 49.9 ± 3.8 | 51.3 ± 2.7 | 56.9 ± 2.1 | 58.8 ± 1.5 | 59.0 ± 2.3 | 60.9 ± 2.8 |
6 | 71.0 ± 1.9 | 45.8 ± 1.9 | 47.4 ± 1.5 | 52.5 ± 2.4 | 55.1 ± 2.8 | 56.0 ± 1.8 | 58.2 ± 1.9 |
9 | 71.2 ± 1.7 | 43.0 ± 2.5 | 46.3 ± 6.6 | 48.2 ± 4.9 | 50.0 ± 6.0 | 52.6 ± 4.2 | 54.2 ± 3.5 |
Dose [J/cm2] | Water Contact Angle [°] | |||||||
---|---|---|---|---|---|---|---|---|
Pristine | 0 h | Rinsing | 1 h | 24 h | 7 Days | 15 Days | 30 Days | |
1.5 | 70.1 ± 2.6 | 57.4 ± 3.2 | 59.3 ± 3.2 | 64.0 ± 3.2 | 65.1 ± 3.5 | 65.8 ± 2.1 | 66.5 ± 2.1 | 69.5 ± 2.2 |
3 | 69.6 ± 2.5 | 51.7 ± 2.6 | 57.6 ± 2.3 | 61.1 ± 3.4 | 63.5 ± 2.1 | 63.6 ± 1.5 | 64.3 ± 2.0 | 68.3 ± 2.2 |
6 | 70.2 ± 2.1 | 46.4 ± 2.0 | 58.1 ± 3.3 | 61.1 ± 2.8 | 63.8 ± 3.2 | 63.7 ± 1.7 | 64.2 ± 1.8 | 67.1 ± 2.5 |
9 | 70.8 ± 2.3 | 43.2 ± 1.3 | 58.2 ± 2.4 | 59.3 ± 2.4 | 61.7 ± 3.3 | 62.36 ± 2.0 | 62.8 ± 2.3 | 68.9 ± 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, G.; Park, T.; Song, I.-H. Surface Modification of Polymethylmethacrylate (PMMA) by Ultraviolet (UV) Irradiation and IPA Rinsing. Micromachines 2022, 13, 1952. https://doi.org/10.3390/mi13111952
Bae G, Park T, Song I-H. Surface Modification of Polymethylmethacrylate (PMMA) by Ultraviolet (UV) Irradiation and IPA Rinsing. Micromachines. 2022; 13(11):1952. https://doi.org/10.3390/mi13111952
Chicago/Turabian StyleBae, Geundong, Taehyun Park, and In-Hyouk Song. 2022. "Surface Modification of Polymethylmethacrylate (PMMA) by Ultraviolet (UV) Irradiation and IPA Rinsing" Micromachines 13, no. 11: 1952. https://doi.org/10.3390/mi13111952
APA StyleBae, G., Park, T., & Song, I. -H. (2022). Surface Modification of Polymethylmethacrylate (PMMA) by Ultraviolet (UV) Irradiation and IPA Rinsing. Micromachines, 13(11), 1952. https://doi.org/10.3390/mi13111952