Winogradsky Bioelectrochemical System as a Novel Strategy to Enrich Electrochemically Active Microorganisms from Arsenic-Rich Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sample Collection
2.2. Bioelectrochemical System Set-Up, Operation, and Electrochemical Analysis
2.3. Electrochemical Characterization
2.4. Scanning Electron Microscopy (SEM) and Bacterial Isolation from BES Cathodes
2.5. Microbial Community Characterization
3. Results and Discussion
3.1. Operation and Electrochemical Analysis of Winogradsky BESs
3.2. Bacterial Community Characterization
3.3. SEM-EDS Characterization of Biocathodes
3.4. Identification and Characterization of Isolates from Winogradsky BES Cathodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Sarkar, D.; Li, L.; Datta, R. Contaminant Removal and Resource Recovery in Bioelectrochemical Wastewater Treatment. Curr. Pollut. Rep. 2022, 8, 159–176. [Google Scholar] [CrossRef]
- Carbajosa, S.; Malki, M.; Caillard, R.; Lopez, M.F.; Palomares, F.J.; Martín-Gago, J.A.; Rodríguez, N.; Amils, R.; Fernández, V.M.; de Lacey, A.L. Electrochemical Growth of Acidithiobacillus Ferrooxidans on a Graphite Electrode for Obtaining a Biocathode for Direct Electrocatalytic Reduction of Oxygen. Biosens. Bioelectron. 2010, 26, 877–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, D.; Guzman, M.S.; Bose, A. Extracellular Electron Uptake by Autotrophic Microbes: Physiological, Ecological, and Evolutionary Implications. J. Ind. Microbiol. Biotechnol. 2020, 47, 863–876. [Google Scholar] [CrossRef]
- Dong, G.; Chen, Y.; Yan, Z.; Zhang, J.; Ji, X.; Wang, H.; Dahlgren, R.A.; Chen, F.; Shang, X.; Chen, Z. Recent Advances in the Roles of Minerals for Enhanced Microbial Extracellular Electron Transfer. Renew. Sustain. Energy Rev. 2020, 134, 110404. [Google Scholar] [CrossRef]
- Logan, B.E.; Rossi, R.; Ragab, A.; Saikaly, P.E. Electroactive Microorganisms in Bioelectrochemical Systems. Nat. Rev. Microbiol. 2019, 17, 307–319. [Google Scholar] [CrossRef]
- Croese, E.; Pereira, M.A.; Euverink, G.J.W.; Stams, A.J.M.; Geelhoed, J.S. Analysis of the Microbial Community of the Biocathode of a Hydrogen-Producing Microbial Electrolysis Cell. Appl. Microbiol. Biotechnol. 2011, 92, 1083–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zheng, Y.; Xiao, Y.; Wu, S.; Wu, Y.; Yang, Z.; Zhao, F. Analysis of Oxygen Reduction and Microbial Community of Air-Diffusion Biocathode in Microbial Fuel Cells. Bioresour. Technol. 2013, 144, 74–79. [Google Scholar] [CrossRef]
- Lee, S.H.; Hwang, J.H.; Kabra, A.N.; Abou-Shanab, R.A.I.; Kurade, M.B.; Min, B.; Jeon, B.H. Perchlorate Reduction from a Highly Concentrated Aqueous Solution by Bacterium Rhodococcus Sp. YSPW03. Environ. Sci. Pollut. Res. 2015, 22, 18839–18848. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, Y.; Quan, X.; Chen, S. Anaerobic Biodecolorization of AO7 by a Newly Isolated Fe(III)-Reducing Bacterium Sphingomonas Strain DJ. J. Chem. Technol. Biotechnol. 2015, 90, 158–165. [Google Scholar] [CrossRef]
- Jean, J.S.; Das, S. Metagenomic Insights into Microbial Community Structure in Arsenic-Rich Shallow and Deep Groundwater. In Arsenic Research and Global Sustainability: Proceedings of the Sixth International Congress on Arsenic in the Environment (As2016), Stockholm, Sweden, 19–23 June 2016; CRC Press: Boca Raton, FL, USA, 2016; p. 117. [Google Scholar]
- Doyle, L.E.; Marsili, E. Methods for Enrichment of Novel Electrochemically-Active Microorganisms. Bioresour. Technol. 2015, 195, 273–282. [Google Scholar] [CrossRef]
- Zuo, Y.; Xing, D.; Regan, J.M.; Logan, B.E. Isolation of the Exoelectrogenic Bacterium Ochrobactrum Anthropi YZ-1 by Using a U-Tube Microbial Fuel Cell. Appl. Environ. Microbiol. 2008, 74, 3130–3137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueoka, N.; Kouzuma, A.; Watanabe, K. Electrode Plate-Culture Methods for Colony Isolation of Exoelectrogens from Anode Microbiomes. Bioelectrochemistry 2018, 124, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Liu, X.; Xue, Y.; He, F.; Dang, Y.; Sun, D. Enhancement of Denitrifying Anaerobic Methane Oxidation via Applied Electric Potential. J. Environ. Manag. 2022, 318, 115527. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Tussell, R.; Valle-Gough, R.E.; Peraza-Baeza, I.; Domínguez-Maldonado, J.; Gonzalez-Muñoz, M.; Cortes-Velazquez, A.; Leal-Baustista, R.M.; Alzate-Gaviria, L. Influence of Two Polarization Potentials on a Bioanode Microbial Community Isolated from a Hypersaline Coastal Lagoon of the Yucatan Peninsula, in México. Sci. Total Environ. 2019, 681, 258–266. [Google Scholar] [CrossRef]
- Haavisto, J.M.; Kokko, M.E.; Lakaniemi, A.M.; Sulonen, M.L.K.; Puhakka, J.A. The Effect of Start-up on Energy Recovery and Compositional Changes in Brewery Wastewater in Bioelectrochemical Systems. Bioelectrochemistry 2020, 132, 107402. [Google Scholar] [CrossRef]
- Loss, R.A.; Fontes, M.L.; Reginatto, V.; Antônio, R.V. Biohydrogen Production by a Mixed Photoheterotrophic Culture Obtained from a Winogradsky Column Prepared from the Sediment of a Southern Brazilian Lagoon. Renew. Energy 2013, 50, 648–654. [Google Scholar] [CrossRef]
- Sridharan, R.; Peter, J.D.; Senthil Kumar, P.; Krishnaswamy, V.G. Acetaminophen Degradation Using Bacterial Strains Isolated from Winogradsky Column and Phytotoxicity Analysis of Dump Site Soil. Chemosphere 2022, 286, 131570. [Google Scholar] [CrossRef]
- Bobadilla, M.P.; Serrano, R.G. Microorganisms on Stage. Perform. Res. 2020, 25, 38–44. [Google Scholar] [CrossRef]
- Rundell, E.A.; Banta, L.M.; Ward, D.V.; Watts, C.D.; Birren, B.; Esteban, D.J. 16S RRNA Gene Survey of Microbial Communities in Winogradsky Columns. PLoS ONE 2014, 9, e104134. [Google Scholar] [CrossRef] [Green Version]
- Abbasian, F.; Lockington, R.; Mallavarapu, M.; Naidu, R. A Pyrosequencing-Based Analysis of Microbial Diversity Governed by Ecological Conditions in the Winogradsky Column. World J. Microbiol. Biotechnol. 2015, 31, 1115–1126. [Google Scholar] [CrossRef]
- Babcsányi, I.; Meite, F.; Imfeld, G. Biogeochemical Gradients and Microbial Communities in Winogradsky Columns Established with Polluted Wetland Sediments. FEMS Microbiol. Ecol. 2017, 93, fix089. [Google Scholar] [CrossRef]
- Fernández-Rendón, C.L.; Barrera-Escorcia, G.; Romero-Paredes, H.; González, I. Influence of the Cellulose and Sulfate Ratio on Voltage Generation in Winogradsky Columns. Rev. Mex. Ing. Quim. 2021, 20, 1–13. [Google Scholar] [CrossRef]
- Rojas, C.; Vargas, I.T.; Bruns, M.A.; Regan, J.M. Electrochemically Active Microorganisms from an Acid Mine Drainage-Affected Site Promote Cathode Oxidation in Microbial Fuel Cells. Bioelectrochemistry 2017, 118, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Leiva, E.D.; Rámila, C.d.P.; Vargas, I.T.; Escauriaza, C.R.; Bonilla, C.A.; Pizarro, G.E.; Regan, J.M.; Pasten, P.A. Natural Attenuation Process via Microbial Oxidation of Arsenic in a High Andean Watershed. Sci. Total Environ. 2014, 466–467, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Anguita, J.M.; Rojas, C.; Pastén, P.A.; Vargas, I.T. A New Aerobic Chemolithoautotrophic Arsenic Oxidizing Microorganism Isolated from a High Andean Watershed. Biodegradation 2018, 29, 59–69. [Google Scholar] [CrossRef]
- Anguita, J.M.; Vera, M.A.; Vargas, I.T. The Electrochemically Active Arsenic Oxidising Bacterium Ancylobacter Sp. TS-1. ChemElectroChem 2018, 5, 3633–3638. [Google Scholar] [CrossRef]
- Bahar, M.M.; Megharaj, M.; Naidu, R. Arsenic Bioremediation Potential of a New Arsenite-Oxidizing Bacterium Stenotrophomonas Sp. MM-7 Isolated from Soil. Biodegradation 2012, 23, 803–812. [Google Scholar] [CrossRef]
- Santini, J.M.; Sly, L.I.; Schnagl, R.D.; Macy, J.M. A New Chemolithoautotrophic Arsenite-Oxidizing Bacterium Isolated from a Gold Mine: Phylogenetic, Physiological, and Preliminary Biochemical Studies. Appl. Environ. Microbiol. 2000, 66, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian Classifier for Rapid Assignment of RRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Collum, S.; Phelan, M.; Goodbody, T.; Doherty, L.; Hu, Y. Preliminary Investigation of Constructed Wetland Incorporating Microbial Fuel Cell: Batch and Continuous Flow Trials. Chem. Eng. J. 2013, 229, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Dumas, C.; Mollica, A.; Féron, D.; Basseguy, R.; Etcheverry, L.; Bergel, A. Checking Graphite and Stainless Anodes with an Experimental Model of Marine Microbial Fuel Cell. Bioresour. Technol. 2008, 99, 8887–8894. [Google Scholar] [CrossRef] [Green Version]
- Malik, L.; Hedrich, S. Ferric Iron Reduction in Extreme Acidophiles. Front. Microbiol. 2022, 12, 818414. [Google Scholar] [CrossRef] [PubMed]
- Osorio, H.; Mangold, S.; Denis, Y.; Ñancucheo, I.; Esparza, M.; Johnson, D.B.; Bonnefoy, V.; Dopson, M.; Holmesa, D.S. Anaerobic Sulfur Metabolism Coupled to Dissimilatory Iron Reduction in the Extremophile Acidithiobacillus Ferrooxidans. Appl. Environ. Microbiol. 2013, 79, 2172–2181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, C.; Moraga, R.; Bustamante, B.; Vilo, C.; Aguayo, P.; Valenzuela, C.; Smith, C.T.; Yáñez, J.; Guzmán-Fierro, V.; Roeckel, M.; et al. Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Rich Sediments, Atacama Desert, Chile. Microorganisms 2021, 9, 483. [Google Scholar] [CrossRef]
- Castro-Severyn, J.; Pardo-Esté, C.; Mendez, K.N.; Fortt, J.; Marquez, S.; Molina, F.; Castro-Nallar, E.; Remonsellez, F.; Saavedra, C.P. Living to the High Extreme: Unraveling the Composition, Structure, and Functional Insights of Bacterial Communities Thriving in the Arsenic-Rich Salar de Huasco Altiplanic Ecosystem. Microbiol. Spectr. 2021, 9, e0044421. [Google Scholar] [CrossRef]
- Leon, C.G.; Moraga, R.; Valenzuela, C.; Gugliandolo, C.; lo Giudice, A.; Papale, M.; Vilo, C.; Dong, Q.; Smith, C.T.; Rossello-Mora, R.; et al. Effect of the Natural Arsenic Gradient on the Diversity and Arsenic Resistance of Bacterial Communities of the Sediments of Camarones River (Atacama Desert, Chile). PLoS ONE 2018, 13, e0195080. [Google Scholar] [CrossRef] [Green Version]
- Bose, H.; Sahu, R.P.; Sar, P. Impact of Arsenic on Microbial Community Structure and Their Metabolic Potential from Rice Soils of West Bengal, India. Sci. Total Environ. 2022, 841, 156486. [Google Scholar] [CrossRef]
- Tang, X.; Zou, L.; Su, S.; Lu, Y.; Zhai, W.; Manzoor, M.; Liao, Y.; Nie, J.; Shi, J.; Ma, L.Q.; et al. Long-Term Manure Application Changes Bacterial Communities in Rice Rhizosphere and Arsenic Speciation in Rice Grains. Environ. Sci. Technol. 2021, 55, 1555–1565. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Xiao, X.; Chen, S.-C.; Zhu, Y.-G.; Sun, G.-X.; Konstantinidis, K.T. High Arsenic Levels Increase Activity Rather than Diversity or Abundance of Arsenic Metabolism Genes in Paddy Soils. Appl. Environ. Microbiol. 2021, 87, e0138321. [Google Scholar] [CrossRef] [PubMed]
- Heinrich-Salmeron, A.; Cordi, A.; Brochier-Armanet, C.; Halter, D.; Pagnout, C.; Abbaszadeh-fard, E.; Montaut, D.; Seby, F.; Bertin, P.N.; Bauda, P.; et al. Unsuspected Diversity of Arsenite-Oxidizing Bacteria as Revealed by Widespread Distribution of the AoxB Gene in Prokaryotes. Appl. Environ. Microbiol. 2011, 77, 4685–4692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamura, S.; Amachi, S. Microbiology of Inorganic Arsenic: From Metabolism to Bioremediation. J. Biosci. Bioeng. 2014, 118, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, K.P.; Glaven, S.M.; Hervey, J.; Lin, B.; Tender, L.M. Enrichment of a High-Current Density Denitrifying Microbial Biocathode. J. Electrochem. Soc. 2014, 161, H3049–H3057. [Google Scholar] [CrossRef]
- Wrighton, K.C.; Virdis, B.; Clauwaert, P.; Read, S.T.; Daly, R.A.; Boon, N.; Piceno, Y.; Andersen, G.L.; Coates, J.D.; Rabaey, K. Bacterial Community Structure Corresponds to Performance during Cathodic Nitrate Reduction. ISME J. 2010, 4, 1443–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Gischkat, S.; Reiche, M.; Akob, D.M.; Hallberg, K.B.; Küsel, K. Ecophysiology of Fe-Cycling Bacteria in Acidic Sediments. Appl. Environ. Microbiol. 2010, 76, 8174–8183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coupland, K.; Johnson, D.B. Evidence That the Potential for Dissimilatory Ferric Iron Reduction Is Widespread among Acidophilic Heterotrophic Bacteria. FEMS Microbiol. Lett. 2008, 279, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.W.; Lee, K.J.; Chae, J.C. Genome Sequence of Herbaspirillum Sp. Strain GW103, a Plant Growth-Promoting Bacterium. J. Bacteriol. 2012, 194, 4150. [Google Scholar] [CrossRef] [Green Version]
- Govarthanan, M.; Lee, G.-W.; Park, J.-H.; Kim, J.S.; Lim, S.-S.; Seo, S.-K.; Cho, M.; Myung, H.; Kamala-Kannan, S.; Oh, B.-T. Bioleaching Characteristics, Influencing Factors of Cu Solubilization and Survival of Herbaspirillum Sp. GW103 in Cu Contaminated Mine Soil. Chemosphere 2014, 109, 42–48. [Google Scholar] [CrossRef]
- Loganathan, P.; Myung, H.; Muthusamy, G.; Lee, K.-J.; Seralathan, K.-K.; Oh, B.-T. Effect of Heavy Metals on AcdS Gene Expression in Herbaspirillium Sp. GW103 Isolated from Rhizosphere Soil. J. Basic Microbiol. 2015, 55, 1232–1238. [Google Scholar] [CrossRef]
- Govarthanan, M.; Park, J.-H.; Praburaman, L.; Yi, Y.-J.; Cho, M.; Myung, H.; Gnanendra, S.; Kamala-Kannan, S.; Oh, B.-T. Relative Expression of Low Molecular Weight Protein, Tyrosine Phosphatase (Wzb Gene) of Herbaspirillum Sp. GW103 Toward Arsenic Stress and Molecular Modeling. Curr. Microbiol. 2015, 71, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Leiva-Aravena, E.; Vera, M.A.; Nerenberg, R.; Leiva, E.D.; Vargas, I.T. Biofilm Formation of Ancylobacter Sp. TS-1 on Different Granular Materials and Its Ability for Chemolithoautotrophic As(III)-Oxidation at High Concentrations. J. Hazard. Mater. 2022, 421, 126733. [Google Scholar] [CrossRef] [PubMed]
- Martínková, L.; Uhnáková, B.; Pátek, M.; Nesvera, J.; Kren, V. Biodegradation Potential of the Genus Rhodococcus. Environ. Int. 2009, 35, 162–177. [Google Scholar] [CrossRef]
- Zhao, H.; Kong, C.-H. Enhanced Removal of P-Nitrophenol in a Microbial Fuel Cell after Long-Term Operation and the Catabolic Versatility of Its Microbial Community. Chem. Eng. J. 2018, 339, 424–431. [Google Scholar] [CrossRef]
- Sharma, M.; Nandy, A.; Taylor, N.; Venkatesan, S.V.; Ozhukil Kollath, V.; Karan, K.; Thangadurai, V.; Tsesmetzis, N.; Gieg, L.M. Bioelectrochemical Remediation of Phenanthrene in a Microbial Fuel Cell Using an Anaerobic Consortium Enriched from a Hydrocarbon-Contaminated Site. J. Hazard. Mater. 2020, 389, 121845. [Google Scholar] [CrossRef]
- Anandham, R.; Indiragandhi, P.; Madhaiyan, M.; Chung, J.; Ryu, K.Y.; Jee, H.J.; Sa, T. Thiosulfate Oxidation and Mixotrophic Growth of Methylobacterium Goesingense and Methylobacterium Fujisawaense. J. Microbiol. Biotechnol. 2009, 19, 17–22. [Google Scholar] [PubMed]
- Sun, J.; Li, Y.; Hu, Y.; Hou, B.; Zhang, Y.; Li, S. Understanding the Degradation of Congo Red and Bacterial Diversity in an Air-Cathode Microbial Fuel Cell Being Evaluated for Simultaneous Azo Dye Removal from Wastewater and Bioelectricity Generation. Appl. Microbiol. Biotechnol. 2013, 97, 3711–3719. [Google Scholar] [CrossRef]
- Erable, B.; Vandecandelaere, I.; Faimali, M.; Delia, M.-L.; Etcheverry, L.; Vandamme, P.; Bergel, A. Marine Aerobic Biofilm as Biocathode Catalyst. Bioelectrochemistry 2010, 78, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.; Yeon, Y.J.; Lee, S.; Choe, H.; Jang, M.G.; Cho, D.H.; Park, S.; Kim, Y.H. Electro-Biocatalytic Production of Formate from Carbon Dioxide Using an Oxygen-Stable Whole Cell Biocatalyst. Bioresour. Technol. 2015, 185, 35–39. [Google Scholar] [CrossRef]
- Ayed, L.; Mahdhi, A.; Cheref, A.; Bakhrouf, A. Decolorization and Degradation of Azo Dye Methyl Red by an Isolated Sphingomonas Paucimobilis: Biotoxicity and Metabolites Characterization. Desalination 2011, 274, 272–277. [Google Scholar] [CrossRef]
- Chauhan, S.; Sharma, V.; Varjani, S.; Sindhu, R.; Chaturvedi Bhargava, P. Mitigation of Tannery Effluent with Simultaneous Generation of Bioenergy Using Dual Chambered Microbial Fuel Cell. Bioresour. Technol. 2022, 351, 127084. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, Z.; Zhao, N.; Zhang, K.; Song, H. Increased Power Generation from Cylindrical Microbial Fuel Cell Inoculated with P. Aeruginosa. Biosens. Bioelectron. 2019, 141, 111394. [Google Scholar] [CrossRef]
- Islam, M.A.; Ethiraj, B.; Cheng, C.K.; Yousuf, A.; Khan, M.M.R. An Insight of Synergy between Pseudomonas Aeruginosa and Klebsiella Variicola in a Microbial Fuel Cell. ACS Sustain. Chem. Eng. 2018, 6, 4130–4137. [Google Scholar] [CrossRef]
- Ren, J.; Li, N.; Du, M.; Zhang, Y.; Hao, C.; Hu, R. Study on the Effect of Synergy Effect between the Mixed Cultures on the Power Generation of Microbial Fuel Cells. Bioengineered 2021, 12, 844–854. [Google Scholar] [CrossRef]
- Guan, F.; Yuan, X.; Duan, J.; Zhai, X.; Hou, B. Phenazine Enables the Anaerobic Respiration of Pseudomonas Aeruginosa via Electron Transfer with a Polarised Graphite Electrode. Int. Biodeterior. Biodegrad. 2019, 137, 8–13. [Google Scholar] [CrossRef]
- Bosire, E.M.; Rosenbaum, M.A. Electrochemical Potential Influences Phenazine Production, Electron Transfer and Consequently Electric Current Generation by Pseudomonas Aeruginosa. Front. Microbiol. 2017, 8, 892. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.H.; Boon, N.; Aelterman, P.; Clauwaert, P.; de Schamphelaire, L.; Vanhaecke, L.; de Maeyer, K.; Höfte, M.; Verstraete, W.; Rabaey, K. Metabolites Produced by Pseudomonas Sp. Enable a Gram-Positive Bacterium to Achieve Extracellular Electron Transfer. Appl. Microbiol. Biotechnol. 2008, 77, 1119–1129. [Google Scholar] [CrossRef]
- Venkidusamy, K.; Hari, A.R.; Megharaj, M. Petrophilic, Fe(III) Reducing Exoelectrogen Citrobacter Sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems. Front. Microbiol. 2018, 9, 349. [Google Scholar] [CrossRef]
Isolate ID | Closed Bacteria | Confidence Threshold |
---|---|---|
CA1 | Herbaspirillum sp. | 100% |
CA4 | Ancylobacter sp. | 97% |
CA5 | Rhodococcus sp. | 100% |
CA7 | Rhodococcus sp. | 100% |
CA8 | Rhodococcus sp. | 100% |
CB1 | Methylorubrum sp. | 100% |
CB2 | Sphingomonas sp. | 100% |
CB5 | Pseudomonas sp. | 100% |
CB7 | Pseudomonas sp. | 100% |
CB8 | Ancylobacter sp. | 97% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantillo-González, A.; Anguita, J.; Rojas, C.; Vargas, I.T. Winogradsky Bioelectrochemical System as a Novel Strategy to Enrich Electrochemically Active Microorganisms from Arsenic-Rich Sediments. Micromachines 2022, 13, 1953. https://doi.org/10.3390/mi13111953
Cantillo-González A, Anguita J, Rojas C, Vargas IT. Winogradsky Bioelectrochemical System as a Novel Strategy to Enrich Electrochemically Active Microorganisms from Arsenic-Rich Sediments. Micromachines. 2022; 13(11):1953. https://doi.org/10.3390/mi13111953
Chicago/Turabian StyleCantillo-González, Angela, Javiera Anguita, Claudia Rojas, and Ignacio T. Vargas. 2022. "Winogradsky Bioelectrochemical System as a Novel Strategy to Enrich Electrochemically Active Microorganisms from Arsenic-Rich Sediments" Micromachines 13, no. 11: 1953. https://doi.org/10.3390/mi13111953
APA StyleCantillo-González, A., Anguita, J., Rojas, C., & Vargas, I. T. (2022). Winogradsky Bioelectrochemical System as a Novel Strategy to Enrich Electrochemically Active Microorganisms from Arsenic-Rich Sediments. Micromachines, 13(11), 1953. https://doi.org/10.3390/mi13111953