Design and Analysis of an O+E-Band Hybrid Optical Amplifier for CWDM Systems
Abstract
:1. Introduction
2. Theoretical Background
Spectroscopic Properties and Rate Equations of Pr
3. Proposed Design of Hybrid Optical Amplifier
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HOA | hybrid optical amplifier |
BDFA | bismuth-doped fiber amplifier |
SOA | semiconductor optical amplifier |
NF | noise figure |
PDFA | praseodymium-doped fiber amplifier |
EDFA | erbium-doped fiber amplifier |
CW | continuous wave |
praseodymium-doped fiber | |
SMF | single-mode fiber |
WFBG | wideband fiber Bragg grating |
CWDM | coarse wavelength-division multiplexing |
SDM | spatial division multiplexing |
OMBT | optical multiband transmission |
ASE | amplified spontaneous emission |
GVD | group velocity dispersion |
OPM | optical power meter |
OSA | optical spectrum analyzer |
OSNR | optical signal-to-noise ratio |
ISI | intersymbol interference |
BER | bit-error rate |
References
- Sambo, N.; Ferrari, A.; Napoli, A.; Costa, N.; Pedro, J.; S-Krombholz, B.; Castoldi, P.; Curri, V. Provisioning in multi-band optical networks. J. Light. Technol. 2020, 38, 2598–2605. [Google Scholar] [CrossRef]
- Mirza, J.; Ghafoor, S.; Salman, A.; Habib, N.; Qureshi, K.K. Design of L+ U-band Erbium-doped fiber amplifier based on a single S-band forward pump source. Int. J. Commun. Syst. 2022, 35, e5250. [Google Scholar] [CrossRef]
- Optical Communication Band. Available online: https://www.fiberlabs.com/glossary/optical-communication-band/ (accessed on 8 November 2022).
- Donodin, A.; Dvoyrin, V.; Manuylovich, E.; Krzczanowicz, L.; Forysiak, W.; Melkumov, M.; Mashinsky, V.; Turitsyn, S. Bismuth doped fibre amplifier operating in E-and S-optical bands. Opt. Mater. Express 2021, 11, 127–135. [Google Scholar] [CrossRef]
- Ferrari, A.; Napoli, A.; Fischer, J.K.; Costa, N.; Forysiak, W. Assessment on the achievable throughput of multi-band ITU-T G. 652. D fiber transmission systems. J. Light. Technol. 2020, 38, 4279–4291. [Google Scholar] [CrossRef]
- Mirza, J.; Ghafoor, S.; Habib, N.; Kanwal, F.; Qureshi, K.K. Performance evaluation of praseodymium doped fiber amplifiers. Opt. Rev. 2021, 28, 611–618. [Google Scholar] [CrossRef]
- Mirza, J.; Imtiaz, W.A.; Aljohani, A.J.; Atieh, A.; Ghafoor, S. Design and analysis of a 32×5 Gbps passive optical network employing FSO based protection at the distribution level. Alex. Eng. J. 2020, 59, 4621–4631. [Google Scholar] [CrossRef]
- Mirza, J.; Imtiaz, W.A.; Aljohani, A.J.; Ghafoor, S. A high bit rate free space optics based ring topology having carrier-less nodes. IET Commun. 2021, 15, 1530–1538. [Google Scholar] [CrossRef]
- Amin, M.Z.; Qureshi, K.K.; Hossain, M.M. Doping radius effects on an Erbium-doped fiber amplifier. Chin. Opt. Lett. 2019, 17, 010602-6. [Google Scholar] [CrossRef]
- Pedro, J.; Costa, N. Optimized hybrid Raman/EDFA amplifier placement for DWDM mesh networks. J. Light. Technol. 2017, 36, 1552–1561. [Google Scholar] [CrossRef]
- Singh, S.; Kaler, R.S. Review on recent developments in hybrid optical amplifier for dense wavelength division multiplexed system. Opt. Eng. 2015, 54, 100901-13. [Google Scholar] [CrossRef]
- Kaur, I.; Gupta, N. Hybrid Fiber Amplifier; IntechOpen: London, UK, 2012. [Google Scholar]
- Al-Azzawi, A.; Almukhtar, A.A.; Hamida, B.A.; Das, S.; Dhar, A.; Paul, M.C.; Ahmad, H.; Harun, S.W. Wideband and flat gain series Erbium doped fiber amplifier using hybrid active fiber with backward pumping distribution technique. Results Phys. 2019, 13, 102186. [Google Scholar] [CrossRef]
- Galdino, L.; Semrau, D.; Ionescu, M.; Edwards, A.; Pelouch, W.; Desbruslais, S.; James, J. Study on the impact of nonlinearity and noise on the performance of high-capacity broadband hybrid Raman-EDFA amplified system. J. Light. Technol. 2019, 37, 5507–5515. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.-X.; Sun, Y.; Zhang, H.; Batshon, H.G.; Mazurczyk, M.V.; Sinkin, O.V.; Foursa, D.G.; Pilipetskii, A. 49.3 Tb/s transmission over 9100 km using C+ L EDFA and 54 Tb/s transmission over 9150 km using hybrid-Raman EDFA. J. Light. Technol. 2015, 33, 2724–2734. [Google Scholar] [CrossRef]
- Arnould, A.; Ghazisaeidi, A.; Gac, D.L.; Brindel, P.; Makhsiyan, M.; Mekhazni, K.; Blache, F. 103 nm ultra-wideband hybrid Raman/SOA transmission over 3×100 km SSMF. J. Light. Technol. 2020, 38, 504–508. [Google Scholar] [CrossRef]
- Guo, G.; Shamsshooli, A.; Akasaka, Y.; Ikeuchi, T.; Vasilyev, M. Noise figure study for a 3-stage hybrid amplifier using parametric wavelength converters and EDFA. IEEE Photonics Technol. Lett. 2021, 33, 872–875. [Google Scholar] [CrossRef]
- Kaur, A.; Bhamrah, M.S.; Atieh, A. Raman pumps power distribution optimization for maximum overall gain and flatness of a hybrid SOA/EDFA/Raman optical amplifier. J. Opt. Commun. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Obaid, H.M.; Shahid, H. Er-Yb codoped waveguide/Raman hybrid optical amplifier with enhanced gain for DWDM system. Opt. Eng. 2018, 57, 096109. [Google Scholar] [CrossRef]
- Obaid, H.M.; Shahid, H. Numerical achievement of high and flat gain using Er-Yb co-doped fiber/Raman hybrid optical amplifier. Optik 2019, 186, 72–83. [Google Scholar] [CrossRef]
- Saidin, N.; Taib, N.I.A.; Abidin, M.S.Z.; Hasbullah, N.F.; Ralib, A.A.M. Performance configuration of Raman-EDFA hybrid optical amplifier for WDM applications. IOP Conf. Ser. Mater. Sci. Eng. 2017, 210, 012033. [Google Scholar] [CrossRef]
- Tench, R.E.; Romano, C.; Delavaux, J.-M.; Lenox, R.; Byrne, D.; Carney, K. In-depth studies of the spectral bandwidth of a 25 W 2 μm band PM hybrid Ho-and Tm-doped fiber amplifier. J. Light. Technol. 2019, 38, 2456–2463. [Google Scholar] [CrossRef]
- Tench, R.E.; Amavigan, A.; Romano, C.; Traore, D.; Delavaux, J.-M.; Robin, T.; Cadier, B.; Laurent, A.; Crochet, P. 3.5 W broadband PM hybrid amplifier at 2051 nm with Holmium-and Thulium-doped single-clad fibers. J. Light. Technol. 2020, 39, 1471–1476. [Google Scholar] [CrossRef]
- Maes, F.; Sharma, M.; Wang, L.; Jiang, Z. High power BDF/EDF hybrid amplifier providing 27 dB gain over 90 nm in the E+ S band. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 6–10 March 2022; p. Th4C-8. [Google Scholar]
- Guo, C.; Shamsshooli, A.; Vasilyev, M.; Akasaka, Y.; Palacharla, P. Noise figure measurement for a 3-stage hybrid amplifier using parametric wavelength converters and EDFA. In Proceedings of the IEEE Photonics Conference (IPC), Virtual, 18–21 October 2021; pp. 1–2. [Google Scholar]
- Ros, F.D.; de Moura, U.C.; Luis, R.S.; Rademacher, G.; Puttnam, B.J.; Zibar, D. Optimization of a hybrid EDFA-Raman C+ L band amplifier through neural-network models. In Proceedings of the Optical Fiber Communication Conference, Washington, DC, USA, 6–11 June 2021; p. Tu1E-5. [Google Scholar]
- Alharbi, A.G.; Mirza, J.; Raza, M.; Ghafoor, S. Performance enhancement of Praseodymium doped fiber amplifiers. Comput. Mater. Contin. 2022, 73, 5411–5422. [Google Scholar] [CrossRef]
- OptiSystem Overview. Available online: https://optiwave.com/optisystem-overview/ (accessed on 8 November 2022).
- Berkdemir, C.; Ozsoy, S. Modelling consideration of Praseodymium-doped fiber amplifiers for 1.3 μm wavelength applications. Opt. Commun. 2007, 269, 102–106. [Google Scholar] [CrossRef]
- O’Mahony, M.J. Semiconductor laser optical amplifiers for use in future fiber systems. J. Light. Technol. 1988, 6, 531–544. [Google Scholar] [CrossRef]
- Alharbi, A.G.; Kanwal, F.; Ghafoor, S.; Habib, N.; Kanwal, B.; Atieh, A.; Kousar, T.; Mirza, J. Performance Optimization of Holmium Doped Fiber Amplifiers for Optical Communication Applications in 2–2.15 μm Wavelength Range. Photonics 2022, 9, 245. [Google Scholar] [CrossRef]
- Mirza, J.; Ghafoor, S.; Hussain, A. All-optical regenerative technique for width-tunable ultra-wideband signal generation. Photonic Netw. Commun. 2019, 38, 98–107. [Google Scholar] [CrossRef]
- Eye Diagram. Available online: https://www.sciencedirect.com/topics/engineering/eye-diagram (accessed on 8 November 2022).
Study | Technology | Operating Band | Gain Bandwidth | Gain Flatness | NF |
---|---|---|---|---|---|
[13] | HBEDF-ZEDF | C+L | 70 nm | 1.8 dB | 4.3–7.9 dB |
[18] | SOA-EDFA-Raman | L | 9 nm | 0.8 dB | 5–5.9 dB |
[19] | EYDWA-Raman | C | 23 dB | 2.78 dB | 5–6 dB |
[20] | EYDFA-Raman | C | 20 nm | 1.37 dB | 5.5–6 dB |
[21] | Raman-EDFA | C+L | 70 nm | - | 3 dB |
[22] | HDFA-TDFA | 2000 nm | 89 nm | - | 6.5–7.5 dB |
[24] | BDFA-EDFA | E+S | 90 nm | - | 7 dB |
[25] | EDFA-OPA | S | 60 nm | 1.2 dB | 5.1–6.1 dB |
[26] | EDFA-Raman | C+L | - | 1.9 dB | - |
Proposed | PDFA-SOA | O+E | 180 nm | 1 dB | 4–5.9 dB |
Symbol | Description |
---|---|
, | Ion densities at ground and excited manifolds |
Total number of ions | |
, | Intensities of pump and signal |
, | Power of pump and signal |
, | Power of pump at input and a position z along the PDF |
Pump saturation power | |
Power absorbed | |
, | Transition rates of pump and signal between the ith and jth levels |
Rate of spontaneous emission between the ith and jth levels | |
, | Photon energies for pump and signal |
, | Pump absorption and emission cross-sections |
, | Signal absorption and emission cross-sections |
, | Pump and signal absorption and emission cross-sections for length l |
Quantum efficiency of pump | |
Lifetime of the metastable state | |
L | PDF length |
A | Effective area of fiber core |
Effective loss coefficient | |
Optical confinement factor | |
R(n) | Recombinition rate |
I, | Intensities of signal and spontaneous emission |
e | Electron charge |
E | Photon energy |
Spontaneous emission coefficient | |
V | Active volume |
c | Light velocity |
Material index |
Parameter | Value |
---|---|
Pump wavelength | 1030 nm |
Pump power | 500 mW |
PDF length | 15.7 m |
Pr concentration | m |
Core radius of PDF | 1.2 μm |
Doping radius of PDF | 0.8 μm |
Attenuation of SMF | 0.2 dB/km |
Numerical aperture of PDF | 0.26 |
Center wavelength of WFBG | 1310 nm |
Bandwidth of WFBG | 100 nm |
Reflection of WFGB | 99% |
Injection current | 60 mA |
Length of SOA | m |
Width of SOA | m |
Height of SOA | m |
Optical confinement factor | 0.3 |
Differential gain of SOA | m |
Carrier density at transparency | m |
Initial carrier density | m |
Signal attenuation | 0.1 dB |
Pump attenuation | 0.15 dB |
Temperature | 300 K |
Responsivity of PIN | 0.9 A/W |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanwal, B.; Armghan, A.; Ghafoor, S.; Atieh, A.; Sajid, M.; Kausar, T.; Mirza, J.; Lu, Y. Design and Analysis of an O+E-Band Hybrid Optical Amplifier for CWDM Systems. Micromachines 2022, 13, 1962. https://doi.org/10.3390/mi13111962
Kanwal B, Armghan A, Ghafoor S, Atieh A, Sajid M, Kausar T, Mirza J, Lu Y. Design and Analysis of an O+E-Band Hybrid Optical Amplifier for CWDM Systems. Micromachines. 2022; 13(11):1962. https://doi.org/10.3390/mi13111962
Chicago/Turabian StyleKanwal, Benish, Ammar Armghan, Salman Ghafoor, Ahmad Atieh, Muhammad Sajid, Tasleem Kausar, Jawad Mirza, and Yun Lu. 2022. "Design and Analysis of an O+E-Band Hybrid Optical Amplifier for CWDM Systems" Micromachines 13, no. 11: 1962. https://doi.org/10.3390/mi13111962
APA StyleKanwal, B., Armghan, A., Ghafoor, S., Atieh, A., Sajid, M., Kausar, T., Mirza, J., & Lu, Y. (2022). Design and Analysis of an O+E-Band Hybrid Optical Amplifier for CWDM Systems. Micromachines, 13(11), 1962. https://doi.org/10.3390/mi13111962