Preparation of FeCo/C-N and FeNi/C-N Nanocomposites from Acrylamide Co-Crystallizates and Their Use as Lubricant Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Material Synthesis
2.2.1. Synthesis of Monomer Fe(III)/Co(II) and Fe(III)/Ni(II) Complexes
2.2.2. Preparation of the Polyacrylamide Complexes
2.2.3. Preparation of FeCo/C-N and FeNi/C-N Nanocomposites
2.3. Characterization
2.4. Preparation of the Lubricant Composition
2.5. Tribological Tests
3. Results and Discussion
3.1. Preparation and Frontal Polymerization of Acrylamide Co-Crystallizates
3.2. Tribological Testing of Polymer Complexes
3.3. Preparation of FeCo/C-N and FeNi/C-N Nanocomposites
3.4. Tribological Testing of FeCo/C-N and FeNi/C-N Nanocomposites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, G.; More, K.L.; Johnston, C.M.; Zelenay, P. High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science 2011, 332, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Bian, J.; Zhu, Y.; Sun, C. FeCo Nanoparticles Encapsulated in N-Doped Carbon Nanotubes Coupled with Layered Double (Co, Fe) Hydroxide as an Efficient Bifunctional Catalyst for Rechargeable Zinc–Air Batteries. Small 2021, 17, 2103737. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Jensen, J.O.; Zhang, W.; Cleemann, L.N.; Xing, W.; Bjerrum, N.J.; Li, Q. Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts. Angew. Chem. Int. Ed. 2014, 53, 3675–3679. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.; Park, J.; Choi, M.; Oh, P.; Park, S.; Kim, M.G.; Park, N.; Cho, J.; Lee, J.-S. Carbon-Coated Core–Shell Fe–Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn–Air Battery. ACS Nano 2015, 9, 6493–6501. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.-J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L.-J.; Wang, J.-Q.; Hu, J.-S.; Wei, Z.; Wan, L.-J. Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe–Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Fu, M.; Zhao, X.; Zhai, S.; Yan, Y.; Zhang, L.; Zhang, X. Preparation of Fe/N Double Doped Carbon Nanotubes from Lignin in Pennisetum as Oxygen Reduction Reaction Electrocatalysts for Zinc–Air Batteries. ACS Appl. Energy Mater. 2022, 5, 4340–4350. [Google Scholar] [CrossRef]
- Yoo, T.Y.; Yoo, J.M.; Sinha, A.K.; Bootharaju, M.S.; Jung, E.; Lee, H.S.; Lee, B.-H.; Kim, J.; Antink, W.H.; Kim, Y.M.; et al. Direct Synthesis of Intermetallic Platinum–Alloy Nanoparticles Highly Loaded on Carbon Supports for Efficient Electrocatalysis. J. Am. Chem. Soc. 2020, 142, 14190–14200. [Google Scholar] [CrossRef]
- Kim, J.H.; Shin, D.; Lee, J.; Baek, D.S.; Shin, T.J.; Kim, Y.-T.; Jeong, H.Y.; Kwak, J.H.; Kim, H.; Joo, S.H. A General Strategy to Atomically Dispersed Precious Metal Catalysts for Unravelling Their Catalytic Trends for Oxygen Reduction Reaction. ACS Nano 2020, 14, 1990–2001. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xiao, M.; Zhang, Y.; Jin, Z.; Peng, Z.; Liu, C.; Chen, S.; Ge, J.; Xing, W. Metal–Organic Framework-Induced Synthesis of Ultrasmall Encased NiFe Nanoparticles Coupling with Graphene as an Efficient Oxygen Electrode for a Rechargeable Zn–Air Battery. ACS Catal. 2016, 6, 6335–6342. [Google Scholar] [CrossRef]
- Ye, W.; Chen, S.; Lin, Y.; Yang, L.; Chen, S.; Zheng, X.; Qi, Z.; Wang, C.; Long, R.; Chen, M.; et al. Precisely Tuning the Number of Fe Atoms in Clusters on N-Doped Carbon toward Acidic Oxygen Reduction Reaction. Chem 2019, 5, 2865–2878. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, H.; Wu, M. N-Doped-carbon/cobalt-nanoparticle/N-doped-carbon multi-layer sandwich nanohybrids derived from cobalt MOFs having 3D molecular structures as bifunctional electrocatalysts for on-chip solid-state Zn–air batteries. Nanoscale 2020, 12, 3750–3762. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kang, Y.; Liu, D.; Lei, Z.; Liu, P. Nitrogen-Doped Graphitic Carbon-Supported Ultrafine Co Nanoparticles as an Efficient Multifunctional Electrocatalyst for HER and Rechargeable Zn–Air Batteries. ACS Appl. Mater. Interfaces 2020, 12, 5717–5729. [Google Scholar] [CrossRef] [PubMed]
- Dzhardimalieva, G.I.; Uflyand, I.E. Conjugated Thermolysis of Metal-Containing Monomers: Toward Core–Shell Nanostructured Advanced Materials. J. Inorg. Organomet. Polym. Mater. 2020, 30, 88–110. [Google Scholar] [CrossRef]
- Xu, C.; Niu, Y.; Gong, S.; Liu, X.; Xu, M.; Liu, T.; Chen, Z. Integrating Bimetal Alloy into N-Doped Carbon Nanotubes@Nanowires Superstructure for Zn-Air Batteries. ChemSusChem 2022, 15, e202200312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, J.; Ma, M.; Zhang, C.; Jia, X.; Wang, G. Co and Co9S8 nanoparticles uniformly embedded in S,N-doped porous carbon as electrocatalysts for rechargeable zinc-air batteries. J. Mater. Res. Technol. 2022, 18, 3764–3776. [Google Scholar] [CrossRef]
- Chen, C.; Deng, X.; Deng, Y.; An, L.; Deng, Y.; Zheng, Y.; Dang, D.; Yang, X. A bi-functional Co–Ni layered double hydroxide three-dimensional porous array electrode derived from ZIF-L(Co)@ZIF-L(Co, Ni) for oxygen evolution reaction and supercapacitors. Int. J. Hydrog. Energy 2022, 47, 14896–14905. [Google Scholar] [CrossRef]
- Puniredd, S.R.; Weiyi, S.; Srinivasan, M.P. Pd–Pt and Fe–Ni nanoparticles formed by covalent molecular assembly in supercritical carbon dioxide. J. Colloid Interface Sci. 2008, 320, 333–340. [Google Scholar] [CrossRef]
- Pervikov, A.; Filippov, A.; Mironov, Y.; Kalashnikov, M.; Krinitcyn, M.; Eskin, D.; Lerner, M.; Tarasov, S. Microstructure and properties of a nanostructured W-31 wt% Cu composite produced by magnetic pulse compaction of bimetallic nanoparticles. Int. J. Refract. Met. Hard Mater. 2022, 103, 105735. [Google Scholar] [CrossRef]
- Yazdi, M.S.; Rezayat, M.; Zandi, M.D.; Azami, A. Tribological and Corrosion Behavior of St37 Steel by Electrochemically Deposited Ni-Fe/Al2O3 Coating. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Sun, H.; Jia, J.; Zhang, B.; Yang, J.; Xin, H.; Chen, W.; He, N.; Li, H. Tribological characteristic of atmospheric plasma sprayed NiAl coatings with addition of nanostructured MoO3/Bi2O3 binary oxides as high temperature lubricant. J. Mater. Res. Technol. 2022, 17, 1662–1671. [Google Scholar] [CrossRef]
- Geng, Y.; Cheng, J.; Tan, H.; Zhu, S.; Yang, J.; Liu, W. Tuning the mechanical and high temperature tribological properties of Co-Cr-Ni medium-entropy alloys via controlling compositional heterogeneity. J. Alloys Compd. 2021, 877, 160326. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, Y.; Geng, J.; Peng, Y.; Olson, D.; Hu, X. Tribological behavior of Fe3O4/MoS2 nanocomposites additives in aqueous and oil phase media. Tribol. Int. 2016, 102, 79–87. [Google Scholar] [CrossRef]
- Wu, P.-R.; Feng, Y.-M.; Ge, T.; Kong, Y.-C.; Ma, Z.-S.; Liu, Z.; Cheng, Z.-L. An investigation on tribological properties of the chemically capped zinc borate (ZB)/MoS2 nanocomposites in oil. J. Ind. Eng. Chem. 2018, 63, 157–167. [Google Scholar] [CrossRef]
- Wang, W.; Gong, P.; Hou, T.; Wang, Q.; Gao, Y.; Wang, K. Tribological performances of BP/TiO2 nanocomposites as water-based lubrication additives for titanium alloy plate cold rolling. Wear 2022, 494, 204278. [Google Scholar] [CrossRef]
- Yang, M.; Fan, S.; Huang, H.; Zhang, Y.; Huang, Z.; Hu, H.; Liang, J. In-Situ synthesis of calcium borate/cellulose acetate-laurate nanocomposite as efficient extreme pressure and anti-wear lubricant additives. Int. J. Biol. Macromol. 2020, 156, 280–288. [Google Scholar] [CrossRef]
- Jiao, D.; Zheng, S.; Wang, Y.; Guan, R.; Cao, B. The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl. Surf. Sci. 2011, 257, 5720–5725. [Google Scholar] [CrossRef]
- Li, W.; Zheng, S.; Chen, Q.; Cao, B. A new method for surface modification of TiO2/Al2O3 nanocomposites with enhanced anti-friction properties. Mater. Chem. Phys. 2012, 134, 38–42. [Google Scholar] [CrossRef]
- Wu, P.-R.; Kong, Y.-C.; Ma, Z.-S.; Ge, T.; Feng, Y.-M.; Liu, Z.; Cheng, Z.-L. Preparation and tribological properties of novel zinc borate/MoS2 nanocomposites in grease. J. Alloys Compd. 2018, 740, 823–829. [Google Scholar] [CrossRef]
- Luo, T.; Wei, X.; Zhao, H.; Cai, G.; Zheng, X. Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives. Ceram. Int. 2014, 40, 10103–10109. [Google Scholar] [CrossRef]
- Meng, Z.; Wang, Y.; Xin, X.; Liu, H.; Yan, Y.; Yan, F. Enhanced fretting wear performance of UHMWPE composites by grafting Co–Ni layered double hydroxides on attapulgite nanofibers. Tribol. Int. 2021, 153, 106628. [Google Scholar] [CrossRef]
- Ibrahim, E.M.M.; Hampel, S.; Wolter, A.U.B.; Kath, M.; El-Gendy, A.A.; Klingeler, R.; Täschner, C.; Khavrus, V.O.; Gemming, T.; Leonhardt, A.; et al. Superparamagnetic FeCo and FeNi Nanocomposites Dispersed in Submicrometer-Sized C Spheres. J. Phys. Chem. C 2012, 116, 22509–22517. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Abadir, M.F.; Nam, K.T.; Hamza, M.A.; Salem, S. Synthesis and film formation of iron–cobalt nanofibers encapsulated in graphite shell: Magnetic, electric and optical properties study. J. Mater. Chem. 2011, 21, 10957–10964. [Google Scholar] [CrossRef]
- Yadav, B.C.; Sikarwar, S.; Yadav, R.R.; Chaudhary, P.; Dzhardimalieva, G.I.; Golubeva, N.D. Synthesis and investigation of cubical shaped barium titanate and its application as opto-electronic humidity sensor. J. Mater. Sci. Mater. Electron. 2018, 29, 7770–7777. [Google Scholar] [CrossRef]
- Zotti, A.; Borriello, A.; Zuppolini, S.; Antonucci, V.; Giordano, M.; Pomogailo, A.D.; Lesnichaya, V.A.; Golubeva, N.D.; Bychkov, A.N.; Dzhardimalieva, G.I.; et al. Fabrication and characterization of metal-core carbon-shell nanoparticles filling an aeronautical composite matrix. Eur. Polym. J. 2015, 71, 140–151. [Google Scholar] [CrossRef]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Pardo, S.; Bucio, E. Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers 2021, 13, 2998. [Google Scholar] [CrossRef]
- Pomogailo, A.D.; Dzhardimalieva, G.I. Frontal polymerization of metal-containing monomers: Achievements and problems. Polym. Sci. Ser. A 2004, 46, 250–263. [Google Scholar]
- Aydemir, T.; Burlakova, V.E.; Drogan, E.G.; Dzhardimalieva, G.I.; Uflyand, I.E.; Shershneva, I.N.; Kydralieva, K.A. Mechanical and Tribological Properties of Polymer Materials Based on Heterometallic Fe(III)Co(II) Polyacrylamide Complexes. Compos.–Mech. Comput. Appl. 2021, 12, 81–92. [Google Scholar] [CrossRef]
- Smirnova, N.N.; Bykova, T.A.; Larina, V.N.; Kulagina, T.G.; Pomogailo, A.D.; Dzhardimalieva, G.I. Thermodynamic characteristics of hydrated acrylamide and polyacrylamide complexes of cobalt nitrate at T → 0 to 380 K. Polym. Sci. Ser. A 2010, 52, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; J. Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Murugan, R.; Mohan, S.; Bigotto, A. FTIR and Polarised Raman Spectra of Acrylamide and Polyacrylamide. J. Korean Phys. Soc. 1998, 32, 505–512. [Google Scholar]
- Padgurskas, J.; Rukuiza, R.; Prosyčevas, I.; Kreivaitis, R. Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribol. Int. 2013, 60, 224–232. [Google Scholar] [CrossRef]
Number | Composite | Size, nm | Friction Pair | Coefficient of Friction | Ref. |
---|---|---|---|---|---|
1 | Fe-Ni | 10 | Fe-Ni-silicon wafer | 0.220 | [17] |
2 | W/Cu | Bimodal distribution 20 and 700, spherical shape | W/Cu-сталь | 0.500 | [18] |
3 | Ni-Fe/Al2O3 | Antifriction coating | Ni-Fe/Al2O3-steel | 0.350 | [19] |
4 | MoO3/Bi2O3 | 5–65 | MoO3/Bi2O3-ZrO2 | 0.220 | [20] |
5 | CoCrNi-Ti | Coating | CoCrNi-Ti-steel | 0.360 | [21] |
6 | Fe3O4/MoS2 | about 50–200 | steel-steel | 0.013 | [22] |
7 | ZB/MoS2 | 40–120 | steel-steel | 0.105 | [23] |
8 | BP/TiO2 | about 10 | steel-steel | 0.220 | [24] |
9 | calcium borate/cellulose acetate-laurate nanocomposite | from 10 to 15 μm | steel-steel | 0.100–0.150 | [25] |
10 | Al2O3/SiO2 | about 70 | steel-steel | 0.028–0.034 | [26] |
11 | TiO2/Al2O3 | about 80 | steel-steel | 0.040 | [27] |
12 | ZB/MoS2 | 70–100 | steel-steel | 0.090 | [28] |
13 | Al2O3/TiO2 | 75 | steel-steel | 0.050–0.070 | [29] |
14 | ATP-CoNi(C) | 70 | steel-steel | 0.320 | [30] |
Compounds | νasNH | νsNH | νH2O, δH2O | νCO | δNH | δCH2 | νCH | δ-CH=CH2 | νNO3 |
---|---|---|---|---|---|---|---|---|---|
AAm | 3397 | 3150 | - | 1680 | 1620 | 1433(νC-N) | 1281 | 960, 817 | - |
FeCoAAm | 3320 | 3193 | 3418, 1620 | 1660, 1372 | 1570 | 1440(νC-N), 1430 | 1285 | 980 | 1385 |
FeCoPAAm | 3290 | 3207 | 3443 | 1658, 1372 | 1580 | 1440(νC-N) | 1120 | 1034, 830 w | 1380 |
FeNiAAm | 3290 | 3195 | 3400, 1600 | 1665 | 1580 1590 | 1443 | 1280 | 985 | 1385 |
FeNiPAAm | 3350 | 3180 | 3425, 1613 | 1670, 1372 | 1555 1580 | 1280 | 1285 | 1034, 830 w | 1380 |
FeCo/C-N | 3420 | 3340 | 3440, 1600 | 1607 | 1595 | 1430, 980 | 1280 | - | - |
FeNi/C-N | 3358 | 3192 | 3440, 1600 | 1600 | 1580 | 1412, 980 | 1282 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uflyand, I.E.; Burlakova, V.E.; Drogan, E.G.; Zabiyaka, I.Y.; Kydralieva, K.A.; Kugabaeva, G.D.; Dzhardimalieva, G.I. Preparation of FeCo/C-N and FeNi/C-N Nanocomposites from Acrylamide Co-Crystallizates and Their Use as Lubricant Additives. Micromachines 2022, 13, 1984. https://doi.org/10.3390/mi13111984
Uflyand IE, Burlakova VE, Drogan EG, Zabiyaka IY, Kydralieva KA, Kugabaeva GD, Dzhardimalieva GI. Preparation of FeCo/C-N and FeNi/C-N Nanocomposites from Acrylamide Co-Crystallizates and Their Use as Lubricant Additives. Micromachines. 2022; 13(11):1984. https://doi.org/10.3390/mi13111984
Chicago/Turabian StyleUflyand, Igor E., Victoria E. Burlakova, Ekaterina G. Drogan, Igor Yu. Zabiyaka, Kamila A. Kydralieva, Gulsara D. Kugabaeva, and Gulzhian I. Dzhardimalieva. 2022. "Preparation of FeCo/C-N and FeNi/C-N Nanocomposites from Acrylamide Co-Crystallizates and Their Use as Lubricant Additives" Micromachines 13, no. 11: 1984. https://doi.org/10.3390/mi13111984
APA StyleUflyand, I. E., Burlakova, V. E., Drogan, E. G., Zabiyaka, I. Y., Kydralieva, K. A., Kugabaeva, G. D., & Dzhardimalieva, G. I. (2022). Preparation of FeCo/C-N and FeNi/C-N Nanocomposites from Acrylamide Co-Crystallizates and Their Use as Lubricant Additives. Micromachines, 13(11), 1984. https://doi.org/10.3390/mi13111984