Kinetic Model and Experiment for Self-Ignition of Triethylaluminum and Triethylborane Droplets in Air
Abstract
:1. Introduction
2. Materials and Methods
2.1. Kinetic Model of TEA Droplet Self-Ignition in Air at NPT Conditions
2.2. Self-Ignition Delays for C2H5–Air and C2H5O–Air Mixtures
2.2.1. Option i: C2H5–Air Mixture
2.2.2. Option ii: C2H5O–Air Mixture
2.3. Experimental Setup
3. Results and Discussion
3.1. Self-Ignition of Stoichiometric C2H5–Air and C2H5O–Air Mixtures at NPT Conditions
3.2. Self-Ignition of TEA Droplets in Air at NPT Conditions
3.3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Heat Capacities of TEA–Air Mixture
Appendix B. The Number of TEA Droplets in 1 cm3
References
- Heck, W.B.; Johnson, R.L. Aluminum alkyls—Safe handling. Ind. Eng. Chem. 1962, 54, 35–38. [Google Scholar] [CrossRef]
- Triethylaluminum (CAS 97-93-8)—Chemical & Physical Properties by Cheméo. Available online: https://www.chemeo.com/cid/63-022-7/Aluminum-triethyl (accessed on 22 September 2022).
- Marsel, J.; Kramer, L. Spontaneous ignition properties of metal alkyls. Proc. Combust. Inst. 1958, 7, 906–912. [Google Scholar] [CrossRef]
- Goncalves, R.F.B.; Iha, K.; Rocco, J.A.F.F. Reactive molecular dynamics simulation and chemical kinetic evaluation of combustion of triethylaluminium (TEA). Quim. Nova 2018, 41, 507–511. [Google Scholar] [CrossRef]
- Sato, Y.; Okada, K.; Akiyoshi, M.; Tokudome, K.; Matsunaga, T. Reaction hazards of triethylaluminum under closed conditions. J. Loss Prev. Process Ind. 2011, 24, 656–661. [Google Scholar] [CrossRef]
- Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1972. [Google Scholar]
- Streitwieser, A., Jr.; Heathcock, H. Introduction to Organic Chemistry, 3rd ed.; Macmillan: New York, NY, USA, 1989. [Google Scholar]
- Sydora, O.L. Selective ethylene oligomerization. Organometallics 2019, 38, 997–1010. [Google Scholar] [CrossRef]
- Brotherton, R.J.; Weber, C.J.; Guibert, C.R.; Little, J.L. Boron Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH GmbH: Weinheim, Germany, 2000. [Google Scholar] [CrossRef]
- Allais, F.; Boivin, J.; Nguyen, V.T. Part 2. Mechanistic aspects of the reduction of S-alkyl-thionocarbonates in the presence of triethylborane and air. Beilstein J. Org. Chem. 2007, 3, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirviss, S.B.; Rutkowski, A.J.; Seelbach, C.W.; Oakley, H.T. SAFETY—Pyrophoric Organometallics. Ind. Eng. Chem. 1961, 53, 58A–62A. [Google Scholar] [CrossRef]
- Davis, S.M.; Yilmaz, N. Thermochemical analysis of hypergolic propellants based on triethylaluminum/nitrous oxide. Int. J. Aerosp. Eng. 2014, 2014, 269836. [Google Scholar] [CrossRef] [Green Version]
- You, Z. (Ed.) Chapter 8—Micropropulsion. In Micro and Nano Technologies, Space Microsystems and Micro/Nano Satellites; Butterworth-Heinemann: Oxford, UK, 2018; pp. 295–339. [Google Scholar] [CrossRef]
- Zhou, Y.; Dai, L.; Jiao, N. Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly. Micromachines 2022, 13, 1068. [Google Scholar] [CrossRef] [PubMed]
- Seedhouse, E. SpaceX: Starship to Mars—The First 20 Years; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Triethylaluminum Market Size is Expected to Expand at a CAGR of 1.8% to 2026. Press Release Published: 18 October 2022. Available online: https://www.marketwatch.com/press-release/triethylaluminum-market-size-is-expected-to-expand-at-a-cagr-of-18-to-2026-new-report-spread-across-96-pages-2022-10-18?tesla=y (accessed on 17 November 2022).
- Kuznetsov, N.M.; Frolov, S.M.; Storozhenko, P.A.; Shamshin, I.O. Kinetic model of oxidation and self-ignition of triethyl aluminum in air. Combust. Explos. 2019, 12, 91–97. [Google Scholar]
- Kuznetsov, N.M.; Frolov, S.M.; Storozhenko, P.A. Calculation of the standard enthalpy of formation and heat of complete combustion of triethylaluminum in water vapor and in air. Combust. Explos. 2019, 12, 10–13. [Google Scholar] [CrossRef]
- Kroupnov, A.A.; Pogosbekian, M.J. Energy and structural characteristics for initial stage of self-ignition triethylaluminum in air. Combust. Explos. 2021, 14, 93–97. [Google Scholar] [CrossRef]
- Johnson, W.H.; Kilday, M.V.; Prosen, E.J. Heats of combustion and formation of trimethylborane, triethylborane, and tri-n-butylborane. J. Res. Natl. Bur. Stand. A Phys. Chem. 1961, 65A, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Kondratiev, V.N.; Nikitin, E.E.; Reznikov, A.O.; Umanskii, S.Y. Thermal Bimolecular Reactions in Gases; Nauka: Moscow, Russia, 1976. [Google Scholar]
- Ollivier, C.; Renaud, P. Organoboranes as a source of radicals. Chem. Rev. 2001, 101, 3415–3434. [Google Scholar] [CrossRef] [PubMed]
- Curran, D.P.; McFadden, T.R. Understanding initiation with triethylboron and oxygen: The differences between low-oxygen and high-oxygen regimes. J. Amer. Chem. Soc. 2016, 138, 7741–7752. [Google Scholar] [CrossRef]
- Semenov, N.N. Selected Works, Volume 3: On Some Problems of Chemical Kinetics and Reactivity; Nauka: Moscow, Russia, 2005. [Google Scholar]
- Zel’dovich, Y.B.; Barenblatt, G.I.; Librovich, V.B.; Makhviladze, G.M. Mathematical Theory of Combustion and Explosion; Nauka: Moscow, Russia, 1980. [Google Scholar]
- Basevich, V.Y.; Belyaev, A.A.; Frolov, S.M. The mechanisms of oxidation and combustion of normal alkane hydrocarbons: The transition from C1–C3 to C4H10. Russ. J. Phys. Chem. B 2007, 2, 477–484. [Google Scholar] [CrossRef]
- Williams, F.A. Combustion Theory; Addison-Wesley Publishing Co.: Boston, MA, USA, 1965. [Google Scholar]
- Burcat, A. Ideal Gas Thermodynamic Data in Polynomial Form for Combustion and Air Pollution Use. Thermodynamic Data at the Web Site of the Laboratory for Chemical Kinetics. 2005. Available online: http://garfield.chem.elte.hu/Burcat/burcat.html (accessed on 29 September 2022).
- Elkotb, M.M. Fuel atomization for spray modelling. Prog. Energy Combust. Sci. 1982, 8, 61–91. [Google Scholar] [CrossRef]
- Frolov, S.M.; Basevich, V.Y.; Aksenov, V.S.; Polikhov, S.A. Optimization study of spray detonation initiation by electric discharge. J. Shock Waves 2005, 14, 175–186. [Google Scholar] [CrossRef]
- Azatyan, V.V.; Kogan, A.M.; Neigauz, M.G.; Poroikova, A.I.; Aleksandrov, E.N. The role of self-heating during the combustion of hydrogen near the first ignition limit. Kinet. Catal. 1975, 16, 577–585. [Google Scholar]
Code | ||||||
---|---|---|---|---|---|---|
New code | 0.10 | 2455 | 0 | 0.007 | 0.14 | 0.0053 |
KINET | 0.09 | 2336 | 0 | 0.010 | 0.13 | 0.0057 |
, kcal/mol | |
---|---|
2 | 0.045 |
4 | 0.62 |
5 | 2.6 |
6 | 11.1 |
Test No. | 1 | 2 | 3 | 4 | Mean | RMS |
---|---|---|---|---|---|---|
, ms | 35 | 32 | 28 | 28 | 31 | 3 |
Test No. | 1 | 2 | 3 | 4 | 5 | 6 | Mean | RMS |
---|---|---|---|---|---|---|---|---|
, ms | 24 | 20 | 19 | 19 | 17 | 17 | 19 | 2 |
Test No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Mean | RMS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
, ms | 5 | 5.6 | 5.8 | 5.8 | 5.4 | 5.6 | 5.8 | 5.6 | 5.4 | 5.6 | 5.6 | 6 | 6.4 | 6 | 6.8 | 5.8 | 0.4 |
Test No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Mean | RMS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
, ms | 5 | 5 | 4.8 | 5.2 | 5.4 | 5.2 | 5.2 | 5.8 | 5.8 | 6 | 5.4 | 6.2 | 6.2 | 6.2 | 6.2 | 5.6 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frolov, S.M.; Basevich, V.Y.; Belyaev, A.A.; Shamshin, I.O.; Aksenov, V.S.; Frolov, F.S.; Storozhenko, P.A.; Guseinov, S.L. Kinetic Model and Experiment for Self-Ignition of Triethylaluminum and Triethylborane Droplets in Air. Micromachines 2022, 13, 2033. https://doi.org/10.3390/mi13112033
Frolov SM, Basevich VY, Belyaev AA, Shamshin IO, Aksenov VS, Frolov FS, Storozhenko PA, Guseinov SL. Kinetic Model and Experiment for Self-Ignition of Triethylaluminum and Triethylborane Droplets in Air. Micromachines. 2022; 13(11):2033. https://doi.org/10.3390/mi13112033
Chicago/Turabian StyleFrolov, Sergey M., Valentin Y. Basevich, Andrey A. Belyaev, Igor O. Shamshin, Viktor S. Aksenov, Fedor S. Frolov, Pavel A. Storozhenko, and Shirin L. Guseinov. 2022. "Kinetic Model and Experiment for Self-Ignition of Triethylaluminum and Triethylborane Droplets in Air" Micromachines 13, no. 11: 2033. https://doi.org/10.3390/mi13112033
APA StyleFrolov, S. M., Basevich, V. Y., Belyaev, A. A., Shamshin, I. O., Aksenov, V. S., Frolov, F. S., Storozhenko, P. A., & Guseinov, S. L. (2022). Kinetic Model and Experiment for Self-Ignition of Triethylaluminum and Triethylborane Droplets in Air. Micromachines, 13(11), 2033. https://doi.org/10.3390/mi13112033