Design, Fabrication and Measurement of Full-Color Reflective Electrowetting Displays
Abstract
:1. Introduction
2. Materials and Methods
2.1. CMY Color Mixing Approach
2.2. ON/OFF Operating Principle of the EWD Pixel
2.3. Driving Control System of the EWDs
2.4. Fabrication Process of the EWDs
2.5. Electro-Optical Performance Measurement Setup
3. Results
3.1. The Aperture Ratio and the Driving Voltage
3.2. The Response Time
3.3. The Color Gamut
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hayes, R.A.; Feenstra, B.J. Video-speed electronic paper based on electrowetting. Nature 2003, 425, 383–385. [Google Scholar] [CrossRef] [PubMed]
- Heikenfeld, J.; Zhou, K.; Kreit, E.; Raj, B.; Yang, S.; Sun, B.; Milarcik, A.; Clapp, L.; Schwartz, R. Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions. Nat. Photonics 2009, 3, 292–296. [Google Scholar] [CrossRef]
- Shui, L.; Hayes, R.A.; Jin, M.; Zhang, X.; Bai, P.; van den Berg, A.; Zhou, G. Microfluidics for electronic paper-like displays. Lab A Chip 2014, 14, 2374–2384. [Google Scholar] [CrossRef]
- Comiskey, B.; Albert, J.D.; Yoshizawa, H.; Jacobson, J. An electrophoretic ink for all-printed reflective electronic displays. Nature 1998, 394, 253–255. [Google Scholar] [CrossRef]
- Kao, W.C.; Ye, J.A.; Chu, M.I.; Su, C.y. Image quality improvement for electrophoretic displays by combining contrast enhancement and halftoning techniques. IEEE Trans. Consum. Electron. 2009, 55, 15–19. [Google Scholar] [CrossRef]
- Kim, K.-H.; Jin, H.-J.; Song, D.H.; Cheong, B.-H.; Choi, H.-Y.; Shin, S.T.; Kim, J.C.; Yoon, T.-H. Switching of liquid-crystal devices between reflective and transmissive modes using long-pitch cholesteric liquid crystals. Opt. Lett. 2010, 35, 3504–3506. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.-Y.; Chien, L.-C. A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection. Appl. Phys. Lett. 2007, 91, 131119. [Google Scholar] [CrossRef] [Green Version]
- Giraldo, A.; Massard, R.; Mans, J.; Derckx, E.; Aubert, J.; Mennen, J. 10.3: Ultra low-power Electrowetting-based Displays Using Dynamic Frame Rate Driving. SID Symp. Dig. Tech. Pap. 2011, 42, 114–117. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Smith, N.; Dhindsa, M.; Zhou, K.; Kilaru, M.; Hou, L.; Zhang, J.; Kreit, E.; Raj, B. Recent progress in arrayed electrowetting optics. Opt. Photonics News 2009, 20, 20–26. [Google Scholar] [CrossRef]
- Lee, P.T.; Chiu, C.-W.; Lee, T.-M.; Chang, T.-Y.; Wu, M.-T.; Cheng, W.-Y.; Kuo, S.-W.; Lin, J.-J. First fabrication of electrowetting display by using pigment-in-oil driving pixels. ACS Appl. Mater. Interfaces 2013, 5, 5914–5920. [Google Scholar] [CrossRef]
- Kim, D.Y.; Steckl, A.J. Electrowetting on Paper for Electronic Paper Display. ACS Appl. Mater. Interfaces 2010, 2, 3318–3323. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Shui, L.; Wang, L.; Jin, M.; Hayes, R.A.; Zhou, G. A novel driver for active matrix electrowetting displays. Displays 2015, 37, 86–93. [Google Scholar] [CrossRef]
- Liu, L.; Bai, P.; Yi, Z.; Zhou, G. A Separated Reset Waveform Design for Suppressing Oil Backflow in Active Matrix Electrowetting Displays. Micromachines 2021, 12, 491. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Steckl, A. Three-color electrowetting display device for electronic paper. Appl. Phys. Lett. 2010, 97, 023514. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhuang, L.; Feng, H.; Zhong, B.; Henzen, A.; Groenewold, J.; Liu, F.; Deng, Y.; Tang, B.; Zhou, G. Programmable Control of Two-Phase Fluid Interface Relative Motion in Electrowetting Device. Adv. Mater. Interfaces 2021, 8, 2101086. [Google Scholar] [CrossRef]
- Henzen, A.; Zhou, G.; Guo, Y.; Dou, Y.; Jiang, H.; Yang, G.; Tang, B. 36-4: Full Color Active Matrix Video E-Paper. SID Symp. Dig. Tech. Pap. 2019, 50, 509–511. [Google Scholar] [CrossRef]
- Ku, Y.S.; Kuo, S.W.; Huang, Y.S.; Chen, C.Y.; Lo, K.L.; Cheng, W.Y.; Shiu, J.W. Single-layered multi-color electrowetting display by using ink-jet-printing technology and fluid-motion prediction with simulation. J. Soc. Inf. Disp. 2011, 19, 488–495. [Google Scholar] [CrossRef]
- Simonot, L.; Hébert, M. Between additive and subtractive color mixings: Intermediate mixing models. J. Opt. Soc. Am. A 2014, 31, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.K.; Loo, K.H.; Lai, Y.M.; Tse, C.K. Color Control System for RGB LED With Application to Light Sources Suffering From Prolonged Aging. IEEE Trans. Ind. Electron. 2014, 61, 1788–1798. [Google Scholar] [CrossRef]
- Visconti, P.; Lay-Ekuakille, A.; Primiceri, P.; Ciccarese, G.; Fazio, R.d. Hardware Design and Software Development for a White LED-Based Experimental Spectrophotometer Managed by a PIC-Based Control System. IEEE Sens. J. 2017, 17, 2507–2515. [Google Scholar] [CrossRef]
- Song, Y.; Feng, Y.; Ma, J.; Zhang, X. Design of LED Display Control System Based on AT89C52 Single Chip Microcomputer. J. Comput. 2011, 6, 718–724. [Google Scholar] [CrossRef]
- Yang, G.; Tang, B.; Yuan, D.; Henzen, A.; Zhou, G. Scalable Fabrication and Testing Processes for Three-Layer Multi-Color Segmented Electrowetting Display. Micromachines 2019, 10, 341. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Tang, B.; Yang, G.; Guo, Y.; Liu, L.; Henzen, A. Progress in Advanced Properties of Electrowetting Displays. Micromachines 2021, 12, 206. [Google Scholar] [CrossRef]
- Yang, G.; Liu, L.; Zheng, Z.; Henzen, A.; Xi, K.; Bai, P.; Zhou, G. A portable driving system for high-resolution active matrix electrowetting display based on FPGA. J. Soc. Inf. Disp. 2020, 28, 287–296. [Google Scholar] [CrossRef]
- Luo, Z.; Fan, J.; Xu, J.; Zhou, G.; Liu, S. A novel driving scheme for oil-splitting suppression in Electrowetting display. Opt. Rev. 2020, 27, 339–345. [Google Scholar] [CrossRef]
- Zeng, W.; Yi, Z.; Zhao, Y.; Zeng, W.; Ma, S.; Zhou, X.; Feng, H.; Liu, L.; Shui, L.; Zhang, C.; et al. Design of Driving Waveform Based on Overdriving Voltage for Shortening Response Time in Electrowetting Displays. Front. Phys. 2021, 9, 642682. [Google Scholar] [CrossRef]
Panel Size (mm) | Pixel Size (μm) | ITO (nm) | AFX (nm) | ||
---|---|---|---|---|---|
96 × 96 | 300 × 300 | 6.8 | 10 | 25 | 800 |
Display Technology | Power Consumption (mW/inch2) | Viewing Comfort | Display Mode |
---|---|---|---|
EWD | 25 | Good | Reflective |
LED | 170 | Poor (radiation) | Emissive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Wang, B.; Chang, Z.; Liu, Q.; Liu, L. Design, Fabrication and Measurement of Full-Color Reflective Electrowetting Displays. Micromachines 2022, 13, 2034. https://doi.org/10.3390/mi13112034
Yang G, Wang B, Chang Z, Liu Q, Liu L. Design, Fabrication and Measurement of Full-Color Reflective Electrowetting Displays. Micromachines. 2022; 13(11):2034. https://doi.org/10.3390/mi13112034
Chicago/Turabian StyleYang, Guisong, Benyou Wang, Zhiqiang Chang, Qing Liu, and Linwei Liu. 2022. "Design, Fabrication and Measurement of Full-Color Reflective Electrowetting Displays" Micromachines 13, no. 11: 2034. https://doi.org/10.3390/mi13112034
APA StyleYang, G., Wang, B., Chang, Z., Liu, Q., & Liu, L. (2022). Design, Fabrication and Measurement of Full-Color Reflective Electrowetting Displays. Micromachines, 13(11), 2034. https://doi.org/10.3390/mi13112034