New Miniaturized Disposable Screen-Printed Microchip Integrated with Molecularly Imprinted Polymer for Metronidazole Benzoate Drug Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Microfabrication of MIP-Based MB Chip Assembly
3. Results and Discussion
3.1. Characterization of the MIP-Based MB Microchip
3.2. Analytical Applications of the MIP-Based MB Microchip
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kajale, A.; Bakde, B.; Channawa, M. Metronidazole Benzoate—A Drug for Colon Targeted Drug Delivery. Res. J. Pharm. Technol. 2012, 5, 978–984. [Google Scholar]
- Tasneem, F.; Alam, M.; Pathan, S. Preparation and Evaluation of Metronidazole Benzoate Periodontal Patches, Banglad. Pharm. J. 2015, 18, 97–102. [Google Scholar]
- Wang, Z.; Wang, L.; Huang, P. Improved Convenient Synthesis of Benzoyl Metronidazole: A Nitroimidazole Antibiotics. J. Chem. 2013, 1, 937454. [Google Scholar] [CrossRef] [Green Version]
- Shaheed, D.; Bader, Q.; Abbas, A. Spectrophotometric determination of metronidazole benzoate in pharmaceutical dosage forms. Int. J. Pharm. Res. 2020, 12, 3526–3532. [Google Scholar]
- Mishra, A.; Kumar, A.; Mishra, A.; Mishra, H. Development of ultraviolet spectroscopic method for the estimation of metronidazole benzoate from pharmaceutical formulation. J. Nat. Sci. Biol. Med. 2014, 5, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Farhadi, K.; Bah, S. Kinetic-Spectrophotometric Determination of Metronidazole Benzoate in Surfactant Medium. J. Chin. Chem. Soc. 2007, 54, 1521–1527. [Google Scholar] [CrossRef]
- Mali, A.; Hake, A.; Patil, M.; Bathe, R.; Patil, M.; Tamboli, A. Estimation of metronidazole benzoate in bulk and formulation by first order derivative area under curve UV-spectrophotometric methods. Int. J. Res. Pharm. Pharmaceut. Sci. 2016, 1, 42–46. [Google Scholar]
- Liao, S.; Weng, Q. Rapid Separation and Determination of Metronidazole Benzoate and Other Antiprotozoal Drugs by Pressurized Capillary Electrochromatography. J. Chem. 2018, 2018, 8953296. [Google Scholar] [CrossRef] [Green Version]
- Raghu, K.; Chandrasekar, A.; Sankaran, K. Electrochemical reduction and voltammetric determination of Metronidazole Benzoate on carbon paste electrode. Ind. J. Appl. Res. 2011, 1, 195–198. [Google Scholar] [CrossRef]
- Shari1, F.; Almiahi, A.; Abduljabbar, A.; Salahuddin, A.; Al-Salman, H. Optimization of a micro-high-performance liquid chromatography method for determination of metronidazole benzoate in their standard powder and in dosage pharmaceuticals. Int. J. Green Pharm. 2019, 13, 48–59. [Google Scholar]
- Santos da Silva, A.; Eduardo da Rosa Silva, C.; Paula, F.; Ernestina, F.; da Silva, B. Discriminative Dissolution Method for Benzoyl Metronidazole Oral Suspension. AAPS Pharm. Sci. Tech. 2016, 17, 778–786. [Google Scholar] [CrossRef] [Green Version]
- Akay, C.; Ozkan, S.; Senturk, Z.; Cevheroglu, S. Simultaneous Determination of Metronidazole Benzoate Methylparaben, and Propylparaben by High-Performance Liquid Chromatography. IL Farmaco 2002, 57, 953–957. [Google Scholar] [CrossRef]
- Al Khafaji, I.; Al-Bayati, Y. Synthesis of New Selective Electrodes for the Determination of Metronidazole Benzoate (MNZB) Based on a Molecularly Imprinted Polymer Combined with Poly Vinyl Chloride. Int. J. Chem. Tech. Res. 2017, 10, 552–561. [Google Scholar]
- Zhang, S.; Xie, Y.; Feng, J.; Chu, Z.; Jin, W. Screen-printing of nanocube-based flexible microchips for the precise biosensing of ethanol during fermentation. AIChE J. 2021, 67, e17142. [Google Scholar] [CrossRef]
- Eltorai, A.; Fox, H.; Mc Gurrin, E.; Guang, S. Microchips in Medicine: Current and Future Applications. Bio. Med. Res. Int. 2016, 2016, 1743472. [Google Scholar] [CrossRef] [Green Version]
- Amoyav, B.; Goldstein, Y.; Steinberg, E.; Benny, O. 3D Printed Microfluidic Devices for Drug Release Assays. Pharmaceutics 2021, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, C.; Taylor, S.; Fernandez, C.; Wanklyn, C.; Burton, D.; Enston, E.; Raniczkowska, A.; Black, M.; Murphy, L. Disposable screen printed sensor for the electrochemical detection of methamphetamine in undiluted saliva. Chem. Cent. J. 2016, 10, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfadhel, M.; Alrobaian, M.; Arida, H. Fabrication of New Potentiometric Microsensor for Metformin Based on Modified Screen-Printed Microchip. Int. J. Electrochem. Sci. 2021, 16, 210660. [Google Scholar] [CrossRef]
- Wanklyn, C.; Burton, D.; Enston, E.; Bartlett, C.; Taylor, S.; Raniczkowska, A.; Black, M.; Murphy, L. Disposable screen printed sensor for the electrochemical detection of delta-9-tetrahydrocannabinol in undiluted saliva. Chem. Cent. J. 2016, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Kozak, J.; Tyszczuk-Rotko, K.; Wójciak, M.; Sowa, I. Electrochemically Activated Screen-Printed Carbon Sensor Modified with Anionic Surfactant (a SPCE/SDS) for Simultaneous Determination of Paracetamol, Diclofenac and Tramadol. Materials 2021, 14, 3581. [Google Scholar] [CrossRef]
- Hughes, G.; Pemberton, R.; Nicholas, P.; Hart, J. Fabrication of Miniaturized Screen-printed Glucose Biosensors, Using a Water-based Ink, and the Evaluation of their Electrochemical Behavior. Electroanalysis 2018, 30, 1616–1620. [Google Scholar] [CrossRef]
- Teymourian, H.; Parrilla, M.; Sempionatto, J.; Montiel, N.; Barfidokht, A.; Echelpoel, R.; Wael, K.; Wang, J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens. 2020, 5, 2679–2700. [Google Scholar] [CrossRef]
- Gong, X.; Huang, K.; Wu, Y.; Zhang, X. Recent progress on screen-printed flexible sensors for human health monitoring. Sen. Actuat. A Phys. 2022, 345, 113821. [Google Scholar] [CrossRef]
- Lusina, A.; Cegłowski, M. Molecularly Imprinted Polymers as State-of-the-Art Drug Carriers in Hydrogel Transdermal Drug Delivery Applications: A review. Polymers 2022, 14, 640. [Google Scholar] [CrossRef]
- El-Schich, Z.; Zhang, Y.; Feith, M.; Beyer, S.; Sternbæk, L.; Ohlsson, L.; Stollenwerk, M.; Wingren, A. Molecularly imprinted polymers in biological applications: A review. Biotechniques 2020, 69, 407–419. [Google Scholar] [CrossRef]
- Xiao, D.; Jiang, Y.; Bi, Y. Molecularly imprinted polymers for the detection of illegal drugs and additives: A review. Microchim. Act. 2018, 185, 247–267. [Google Scholar] [CrossRef]
- Mahdi, Z.; Al-Bayati, Y. Synthesis New Liquid Electrodes for Determination Lansoprzole Based on a Molecularly Imprinted Polymer: A review. Int. J. Drug Deliv. Technol. 2020, 10, 175–182. [Google Scholar] [CrossRef]
- Abdel-Haleem, F.; Gamal, E.; Rizk, M.; Madbouly, A.; El Nashar, R.; Anis, B.; Elnabawy, H.; Khalil, A.; Barhoum, A. Molecularly Imprinted Electrochemical Sensor-Based Fe2O3@MWCNTs for Ivabradine Drug Determination in Pharmaceutical Formulation, Serum, and Urine Samples. Front. Bioeng. Biotechnol. 2021, 9, 648704. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Samukaite-Bubniene, U.; Ratautaite, V.; Bechelany, M.; Ramanavicius, A. Electrochemical molecularly imprinted polymer based sensors for pharmaceutical and biomedical applications: A review. J. Pharm. Biomed. Anal. 2022, 2015, 114739. [Google Scholar] [CrossRef]
- Adumitrăchioaie, A.; Tertiș, M.; Cernat, A.; Săndulescu, R.; Cristea, C. Electrochemical Methods Based on Molecularly Imprinted Polymers for Drug Detection: A review. Int. J. Electrochem. Sci. 2018, 13, 2556–2576. [Google Scholar] [CrossRef]
- Park, R.; Jeon, S.; Jeong, J.; Park, S.; Han, D.; Hong, S. Recent Advances of Point-of-Care Devices Integrated with Molecularly Imprinted Polymers-Based Biosensors: From Biomolecule Sensing Design to Intraoral Fluid Testing; a review. Biosensors 2022, 12, 136. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Chacón, A.; Cetó, X.; Valle, M. Molecularly imprinted polymers—Towards electrochemical sensors and electronic tongues. Anal. Bioanal. Chem. 2021, 413, 6117–6140. [Google Scholar] [CrossRef] [PubMed]
- Rizk, M.; Toubar, S.; Sayour, H.; Mohamed, D.; Touny, R. A new potentiometric sensor based on molecularly imprinted polymer for analysis of a veterinary drug imidocarb dipropionate. Eur. J. Chem. 2014, 5, 18–23. [Google Scholar] [CrossRef]
Parameters | MB Microchip |
---|---|
Linear range, mole L−1 | 1 × 10−8–1 × 10−3 |
Slope, mV/decade | 61.5 ± 0.5 |
Detection Limit, mole L−1 | 7 × 10−9 |
Lower limit of linear range, mole L−1 | 1 × 10−8 |
pH range | 4–7 |
Lifetime, months | ≥4 |
Response time, s. | ≤10 |
No. | Injected, | Found | Recovery, % |
---|---|---|---|
1 | 275.00 | 265.00 | 96.4 |
2 | 27.50 | 26.17 | 95.2 |
3 | 2.75 | 2.60 | 94.5 |
Average recovery | 95.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Beshlawy, M.; Arida, H. New Miniaturized Disposable Screen-Printed Microchip Integrated with Molecularly Imprinted Polymer for Metronidazole Benzoate Drug Detection. Micromachines 2022, 13, 2107. https://doi.org/10.3390/mi13122107
El-Beshlawy M, Arida H. New Miniaturized Disposable Screen-Printed Microchip Integrated with Molecularly Imprinted Polymer for Metronidazole Benzoate Drug Detection. Micromachines. 2022; 13(12):2107. https://doi.org/10.3390/mi13122107
Chicago/Turabian StyleEl-Beshlawy, Menna, and Hassan Arida. 2022. "New Miniaturized Disposable Screen-Printed Microchip Integrated with Molecularly Imprinted Polymer for Metronidazole Benzoate Drug Detection" Micromachines 13, no. 12: 2107. https://doi.org/10.3390/mi13122107
APA StyleEl-Beshlawy, M., & Arida, H. (2022). New Miniaturized Disposable Screen-Printed Microchip Integrated with Molecularly Imprinted Polymer for Metronidazole Benzoate Drug Detection. Micromachines, 13(12), 2107. https://doi.org/10.3390/mi13122107