Crosstalk Suppressed 3D Light Field Display Based on an Optimized Holographic Function Screen
Abstract
:1. Introduction
2. Basic Principle
2.1. Architecture of the 3D LFD
2.2. Modulation Function of the Holographic Function Screen
3. Analysis and Redesign of the HFS Spread Function
4. Experimental and Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, X.; Li, H. The Progress of Light-Field 3-D Displays. Inf. Disp. 2014, 30, 6–14. [Google Scholar] [CrossRef]
- Balram, N.; Tošić, I. Light-field imaging and display systems. Inf. Disp. 2016, 32, 6–13. [Google Scholar] [CrossRef]
- Ma, Q.; Cao, L.; He, Z.; Zhang, S. Progress of three-dimensional light-field display. Chin. Opt. Lett. 2019, 17, 111001. [Google Scholar] [CrossRef]
- Huang, H.; Hua, H. Systematic characterization and optimization of 3D light field displays. Opt. Express 2017, 25, 18508–18525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, D.; Lee, J.-H.; Cho, Y.H.; Jeong, Y.J.; Hwang, H.; Park, D.S. Flat panel light-field 3-D display: Concept, design, rendering, and calibration. Proc. IEEE 2017, 105, 876–891. [Google Scholar] [CrossRef]
- Tay, S.; Blanche, P.-A.; Voorakaranam, R.; Tunç, A.; Lin, W.; Rokutanda, S.; Gu, T.; Flores, D.; Wang, P.; Li, G. An updatable holographic three-dimensional display. Nature 2008, 451, 694–698. [Google Scholar] [CrossRef]
- Buckley, E. Holographic laser projection. J. Disp. Technol. 2011, 7, 135–140. [Google Scholar] [CrossRef]
- Urey, H.; Chellappan, K.V.; Erden, E.; Surman, P. State of the art in stereoscopic and autostereoscopic displays. Proc. IEEE 2011, 99, 540–555. [Google Scholar] [CrossRef]
- Sakamoto, K.; Kimura, R.; Takaki, M. Parallax polarizer barrier stereoscopic 3D display systems. In Proceedings of the 2005 International Conference on Active Media Technology, 2005 (AMT 2005), Kagawa, Japan, 19–21 May 2005; pp. 469–474. [Google Scholar]
- Lv, G.; Wang, Q.; Wang, J.; Zhao, W. Multi-view 3D display with high brightness based on a parallax barrier. Chin. Opt. Lett. 2013, 11, 121101-121101. [Google Scholar]
- Chang, Y.-C.; Tang, L.-C.; Yin, C.-Y. Efficient simulation of intensity profile of light through subpixel-matched lenticular lens array for two-and four-view auto-stereoscopic liquid-crystal display. Appl. Opt. 2013, 52, A356–A359. [Google Scholar] [CrossRef]
- Yu, X.; Sang, X.; Chen, D.; Wang, P.; Gao, X.; Zhao, T.; Yan, B.; Yu, C.; Xu, D.; Dou, W. Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch. Chin. Opt. Lett. 2014, 12, 060008. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, X.; Zhang, L.; Surman, P.; Zheng, Y. Time-multiplexed multi-view three-dimensional display with projector array and steering screen. Opt. Express 2018, 26, 15528–15538. [Google Scholar] [CrossRef]
- Ni, L.; Li, Z.; Li, H.; Liu, X. 360-degree large-scale multiprojection light-field 3D display system. Appl. Opt. 2018, 57, 1817–1823. [Google Scholar] [CrossRef]
- Yu, X.; Sang, X.; Gao, X.; Chen, D.; Liu, B.; Liu, L.; Gao, C.; Wang, P. Dynamic three-dimensional light-field display with large viewing angle based on compound lenticular lens array and multi-projectors. Opt. Express 2019, 27, 16024–16031. [Google Scholar] [CrossRef]
- Stern, A.; Javidi, B. Three-dimensional image sensing, visualization, and processing using integral imaging. Proc. IEEE 2006, 94, 591–607. [Google Scholar] [CrossRef]
- Park, J.-H.; Hong, K.; Lee, B. Recent progress in three-dimensional information processing based on integral imaging. Appl. Opt. 2009, 48, H77–H94. [Google Scholar] [CrossRef]
- Martínez-Corral, M.; Javidi, B. Fundamentals of 3D imaging and displays: A tutorial on integral imaging, light-field, and plenoptic systems. Adv. Opt. Photonics 2018, 10, 512–566. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kim, J.; Kang, J.-M.; Jung, J.-H.; Choi, H.; Lee, B. Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array. Opt. Express 2007, 15, 18253–18267. [Google Scholar] [CrossRef]
- Yu, X.; Sang, X.; Gao, X.; Chen, Z.; Chen, D.; Duan, W.; Yan, B.; Yu, C.; Xu, D. Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues. Opt. Express 2015, 23, 25950–25958. [Google Scholar] [CrossRef]
- Karimzadeh, A. Integral imaging system optical design with aberration consideration. Appl. Opt. 2015, 54, 1765–1769. [Google Scholar] [CrossRef]
- Arai, J.; Kawai, H.; Okano, F. Microlens arrays for integral imaging system. Appl. Opt. 2006, 45, 9066–9078. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Yuan, J.; Fan, F.C.; Jiang, C.; Choi, S.; Sang, X.; Lin, C.; Xu, D. The modulation function and realizing method of holographic functional screen. Opt. Express 2010, 18, 27820–27826. [Google Scholar] [CrossRef] [PubMed]
- Sang, X.; Fan, F.C.; Choi, S.; Jiang, C.; Yu, C.; Yan, B.; Dou, W. Three-dimensional display based on the holographic functional screen. Opt. Eng. 2011, 50, 091303. [Google Scholar] [CrossRef]
- Wen, J.; Yan, X.; Jiang, X.; Yan, Z.; Fan, F.; Li, P.; Chen, Z.; Chen, S. Integral imaging based light field display with holographic diffusor: Principles, potentials and restrictions. Opt. Express 2019, 27, 27441–27458. [Google Scholar] [CrossRef]
- Sang, X.; Fan, F.C.; Jiang, C.; Choi, S.; Dou, W.; Yu, C.; Xu, D. Demonstration of a large-size real-time full-color three-dimensional display. Opt. Lett. 2009, 34, 3803–3805. [Google Scholar] [CrossRef]
- Yan, Z.; Yan, X.; Jiang, X.; Gao, H.; Wen, J. Integral imaging based light field display with enhanced viewing resolution using holographic diffuser. Opt. Commun. 2017, 402, 437–441. [Google Scholar] [CrossRef]
- Sang, X.; Gao, X.; Yu, X.; Xing, S.; Li, Y.; Wu, Y. Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing. Opt. Express 2018, 26, 8883–8889. [Google Scholar] [CrossRef]
- Yu, X.; Sang, X.; Gao, X.; Yang, S.; Liu, B.; Chen, D.; Yan, B.; Yu, C. Floating aerial 3D display based on the freeform-mirror and the improved integral imaging system. Opt. Commun. 2018, 423, 162–166. [Google Scholar] [CrossRef]
- Chen, Y.; Sang, X.; Xing, S.; Guan, Y.; Zhang, H.; Wang, K. Automatic co-design of light field display system based on simulated annealing algorithm and visual simulation. Opt. Express 2022, 30, 17577–17590. [Google Scholar] [CrossRef]
Parameters | Values | Unit |
---|---|---|
Lens gap () | 11.28 | mm |
Pitch of lens () | 8.60 | mm |
Focus of lens () | 19.55 | mm |
Distance between the lens array and the HFS () | 230.10 | mm |
Diffusing angle of the HFS () | 0.67 | ° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yu, X.; Gao, X.; Zhong, C.; Chen, Y.; Sang, X.; Wang, K. Crosstalk Suppressed 3D Light Field Display Based on an Optimized Holographic Function Screen. Micromachines 2022, 13, 2106. https://doi.org/10.3390/mi13122106
Zhang H, Yu X, Gao X, Zhong C, Chen Y, Sang X, Wang K. Crosstalk Suppressed 3D Light Field Display Based on an Optimized Holographic Function Screen. Micromachines. 2022; 13(12):2106. https://doi.org/10.3390/mi13122106
Chicago/Turabian StyleZhang, Hui, Xunbo Yu, Xin Gao, Chongli Zhong, Yingying Chen, Xinzhu Sang, and Kuiru Wang. 2022. "Crosstalk Suppressed 3D Light Field Display Based on an Optimized Holographic Function Screen" Micromachines 13, no. 12: 2106. https://doi.org/10.3390/mi13122106
APA StyleZhang, H., Yu, X., Gao, X., Zhong, C., Chen, Y., Sang, X., & Wang, K. (2022). Crosstalk Suppressed 3D Light Field Display Based on an Optimized Holographic Function Screen. Micromachines, 13(12), 2106. https://doi.org/10.3390/mi13122106