High-Aperture-Ratio Dual-View Integral Imaging Display
Abstract
:1. Introduction
2. Structure and Method
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krijn, M.P.C.M.; De Zwart, S.T.; De Boer, D.K.G.; Willemsen, O.H.; Sluijter, M. 2-D/3-D displays based on switchable lenticulars. J. Soc. Inf. Display 2008, 16, 847–855. [Google Scholar] [CrossRef]
- Hsieh, C.T.G.; Li, Y.; Wu, T.T.; Huang, C.Y.; Tien, C.J.; Lo, K.Y.; Lin, C.H. Twisted nematic dual-view liquid crystal display based on patterned electrodes. J. Display Technol. 2014, 10, 464–469. [Google Scholar] [CrossRef]
- Wang, X.; Hua, H. Depth-enhanced head-mounted light field displays based on integral imaging. Opt. Lett. 2021, 46, 985–988. [Google Scholar] [CrossRef]
- Li, Y.L.; Li, N.N.; Wang, D.; Chu, F.; Lee, S.D.; Zheng, Y.W.; Wang, Q.H. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size. Light Sci. Appl. 2022, 11, 188. [Google Scholar] [CrossRef]
- Choi, H.M.; Hwang, Y.S.; Kim, E.S. Field-of-view enhanced integral imaging with dual prism arrays based on perspective-dependent pixel mapping. Opt. Express 2022, 30, 11046–11065. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Wang, D.; Wang, Q.H. Speckle noise suppression method in holographic display using time multiplexing technique. Opt. Commun. 2019, 436, 253–257. [Google Scholar] [CrossRef]
- Kim, Y.; Park, S.; Baek, H.; Min, S.W. Voxel characteristic estimation of integral imaging display system using self-interference incoherent digital holography. Opt. Express 2022, 30, 902–913. [Google Scholar] [CrossRef]
- Luo, C.G.; Xiao, X.; Martínez-Corral, M.; Chen, C.W.; Javidi, B.; Wang, Q.H. Analysis of the depth of field of integral imaging displays based on wave optics. Opt. Express 2013, 21, 31263–31273. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.F.; Liu, J.; Zhang, Z.Q.; Xu, L.F. Bionic-compound-eye structure for realizing a compact integral imaging 3D display in a cell phone with enhanced performance. Opt. Lett. 2020, 45, 1491–1494. [Google Scholar] [CrossRef]
- Huang, H.; Hua, H. High-performance integral-imaging-based light field augmented reality display using freeform optics. Opt. Express 2018, 26, 17578–17590. [Google Scholar] [CrossRef]
- Chen, G.; Ma, C.; Fan, Z.; Cui, X.; Liao, H. Real-time lens based rendering algorithm for super-multiview integral photography without image resampling. IEEE Trans. Vis. Comput. Graph. 2018, 24, 2600–2609. [Google Scholar] [CrossRef] [PubMed]
- Ives, H.E. Optical properties of a Lippmann lenticulated sheet. J. Opt. Soc. Am. 1931, 21, 171–176. [Google Scholar] [CrossRef]
- Arai, J.; Okano, F.; Hoshino, H.; Yuyama, I. Gradient-index lens-array method based on real-time integral photography for three-dimensional images. Appl. Opt. 1998, 37, 2034–2045. [Google Scholar] [CrossRef] [PubMed]
- Okano, F.; Hoshino, H.; Arai, J.; Yuyama, I. Real-time pickup method for a three-dimensional image based on integral photography. Appl. Opt. 1997, 36, 1598–1603. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Corral, M.; Javidi, B.; Martinez-Cuenca, R.; Saavedra, G. Formation of real, orthoscopic integral images by smart pixel mapping. Opt. Exp. 2005, 13, 9175–9180. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Tan, C.; Lee, B.; Lee, J.; Kim, E. Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging. Appl. Opt. 2008, 47, 6656–6665. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Lee, B.; Kim, E. Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging. Opt. Lasers Eng. 2009, 47, 1189–1194. [Google Scholar] [CrossRef]
- Navarro, H.; Martínez-Cuenca, R.; Saavedra, G.; Martínez-Corral, M.; Javidi, B. 3D integral imaging display by smart pseudoscopic-toorthoscopic conversion (SPOC). Opt. Exp. 2010, 18, 25573–25583. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Z.S.; and Lv, G.J. Dual-view one-dimensional integral imaging 3D display using a barrier array. Optik 2021, 227, 165977. [Google Scholar] [CrossRef]
- Wu, F.; Deng, H.; Luo, C.G.; Li, D.H.; Wang, Q.H. Dual-view integral imaging three-dimensional display. Appl. Opt. 2013, 52, 4911–4914. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, B.C.; Liu, Z.S.; Lv, G.J. Dual-view integral imaging display using a polarizer. Appl. Opt. 2020, 59, 5785–5787. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Lee, C.K.; Hong, K.; Yeom, J.; Lee, B. Projection-type dual-view three-dimensional display system based on integral imaging. Appl. Opt. 2014, 53, G12–G18. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Wang, Q.H.; Wu, F.; Luo, C.G.; and Liu, Y. Cross-talk-free integral imaging three-dimensional display based on a pyramid pinhole array. Photon. Res. 2015, 3, 173–176. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Z.S.; Yu, J.S. Dual-view integral imaging display based on point light sources. J. Soc. Inf. Display 2021, 29, 115–118. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Horizontal pitch of the point light source | 3.843 mm |
Horizontal pitch of the elemental image | 1.89 mm |
Horizontal width of the point light source | 0.5 mm |
Vertical width of the first row point light source | 0.5 mm |
Gap between the OLED and the liquid crystal panel | 3 mm |
Optimal viewing distance | 180 mm |
Number of the point light sources in horizontal direction | 28 |
Number of the point light sources in vertical direction | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.-C.; Yang, F.; Wu, F. High-Aperture-Ratio Dual-View Integral Imaging Display. Micromachines 2022, 13, 2213. https://doi.org/10.3390/mi13122213
Zhao B-C, Yang F, Wu F. High-Aperture-Ratio Dual-View Integral Imaging Display. Micromachines. 2022; 13(12):2213. https://doi.org/10.3390/mi13122213
Chicago/Turabian StyleZhao, Bai-Chuan, Fan Yang, and Fei Wu. 2022. "High-Aperture-Ratio Dual-View Integral Imaging Display" Micromachines 13, no. 12: 2213. https://doi.org/10.3390/mi13122213
APA StyleZhao, B. -C., Yang, F., & Wu, F. (2022). High-Aperture-Ratio Dual-View Integral Imaging Display. Micromachines, 13(12), 2213. https://doi.org/10.3390/mi13122213