High Resolution Multiview Holographic Display Based on the Holographic Optical Element
Abstract
:1. Introduction
2. Designed System and the Proposed Method
2.1. Schematic of the Multiview Holographic Display
2.2. Design Process of the HOE
2.3. The Process of Manufacturing HOE Using Computer-Generated Hologram Printing Technique
2.4. The Algorithm for Generating Synthetic Hologram
3. Experimental Results
3.1. Prototype of the Proposed Multiview Holographic Display
3.2. Experimental Results with High Resolution
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, C.; Sang, Z.; Yan, B. Real-time realistic computer-generated hologram with accurate depth precision and a large depth range. Opt. Express 2022, 30, 40087–40100. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chrysler, B.; Kostuk, R.K. Design of a high-resolution holographic waveguide eye-tracking system operating in near-infrared with conventional optical elements. Opt. Express 2021, 29, 24536–24551. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, Y.; Stengel, M.; Akşit, K.; Albert, R.; Boudaoud, B.; Breer, T.; Kim, J.; Lopes, W.; Majercik, Z.; et al. Foveated AR: Dynamically-foveated augmented reality display. ACM Trans. Graph. 2019, 38, 1–15. [Google Scholar] [CrossRef]
- Hong, K.; YEom, J.; Jang, C.; Hong, J.; Lee, B. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality. Opt. Lett. 2014, 39, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-L.; Deng, H.; Li, J.-J.; He, M.-Y.; Li, D.-H.; Wang, Q.-H. Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal. Opt. Lett. 2019, 44, 387–390. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, H.; Ren, H.; He, M.-Y.; Li, D.-H.; Wang, Q.-H. See-through 2D/3D compatible integral imaging display system using lens-array holographic optical element and polymer dispersed liquid crystal. Opt. Commun. 2020, 456, 124615. [Google Scholar] [CrossRef]
- Zhan, T.; Yin, K.; Xiong, J.; He, Z.; Wu, S.-T. Augmented reality and virtual reality displays: Perspectives and challenges. Iscience 2020, 23, 101397. [Google Scholar] [CrossRef]
- Bigler, C.M.; Blanche, P.A.; Sarma, K. Holographic waveguide heads-up display for longitudinal image magnification and pupil expansion. Appl. Opt. 2018, 57, 2007–2013. [Google Scholar] [CrossRef]
- Shi, L.; Li, B.; Matusik, W. End-to-end learning of 3d phase-only holograms for holographic display. Light Sci. Appl. 2022, 11, 247. [Google Scholar] [CrossRef]
- He, Z. Progress in virtual reality and augmented reality based on holographic display. Appl. Opt. 2019, 58, A74–A81. [Google Scholar] [CrossRef]
- An, J.; Won, K.; Lee, H.S. Past, current, and future of holographic video display. Appl. Opt. 2022, 61, B237–B245. [Google Scholar] [CrossRef]
- Zhang, X. Holographic display system with enhanced viewing angle using boundary folding mirrors. Opt. Commun. 2021, 482, 126580. [Google Scholar] [CrossRef]
- Takekawa, Y.; Takashima, Y.; Takaki, Y. Holographic display having a wide viewing zone using a MEMS SLM without pixel pitch reduction. Opt. Express 2020, 28, 7392–7407. [Google Scholar] [CrossRef]
- Wan, W. Super multi-view display based on pixelated nanogratings under an illumination of a point light source. Opt. Lasers Eng. 2020, 134, 106258. [Google Scholar] [CrossRef]
- Petrov, N.I.; Khromov, M.N.; Sokolov, Y.M. Large-screen multi-view 3D display. OSA Contin. 2019, 2, 2601–2613. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Z.; Liu, J. Adjustable and continuous eyebox replication for a holographic Maxwellian near-eye display. Opt. Lett. 2022, 47, 445–448. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Z.S.; Lv, G.J. Dual-view one-dimensional integral imaging 3D display using a barrier array. Optik 2021, 227, 165977. [Google Scholar] [CrossRef]
- Zhang, X. A spatio-temporal multiplexing multi-view display using a lenticular lens and a beam steering screen. Opt. Commun. 2018, 420, 168–173. [Google Scholar] [CrossRef]
- Yoon, K.-H.; Ju, H.; Rark, I.; Kim, S.-K. Determination of the optimum viewing distance for a multiview auto-stereoscopic 3D display. Opt. Express 2014, 22, 22616–22631. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F. Pixelated Blazed Gratings for High Brightness Multiview Holographic 3D Display. IEEE Photonics Technol. Lett. 2020, 32, 283–286. [Google Scholar] [CrossRef]
- Lu, F.; Hua, J.; Zhou, F.; Xia, Z.; Li, R.; Chen, L.; Qiao, W. Pixelated volume holographic optical element for augmented reality 3D display. Opt. Express 2022, 30, 15929–15938. [Google Scholar] [CrossRef] [PubMed]
- Su, Y. Projection-type multiview holographic three-dimensional display using a single spatial light modulator and a directional diffractive device. IEEE Photonics J. 2018, 10, 7000512. [Google Scholar] [CrossRef]
- Su, Y. Performance improvement of projection-type multiview holographic three-dimensional display using spatial light modulators. Opt. Lasers Eng. 2020, 129, 106079. [Google Scholar] [CrossRef]
- Darkhanbaatar, N. Three-dimensional see-through augmented-reality display system using a holographic micromirror array. Appl. Opt. 2021, 60, 7545–7551. [Google Scholar] [CrossRef] [PubMed]
Parameter | Values |
---|---|
Focal point 1 | (−5, 10, 550 mm) |
Focal point 2 | (0, 10, 550 mm) |
Focal point 3 | (5, 10, 550 mm) |
Focal point 4 | (10, 10, 550 mm) |
Focal length | 550 mm |
Viewing range | (−20°, 20°) |
Parameter | Values |
---|---|
Sensitive wavelength | 633, 532, 457 nm |
Photosensitivity | 150 mJ/cm2 @633 nm |
Refractive index modulation | >0.02 |
Refractive index of material | 1.47 |
Photosensitive layer thickness | 18 ± 1 um |
Parameter | Values |
---|---|
Pixel pitch of SLM | 8 um |
Resolution of SLM | 1920 × 1080 |
Resolution of CGH | 3840 × 2160 |
Resolution of hogel | 1920 × 1080 |
Number of hogels | 2 × 2 |
Exposure time/hogel | 73.7 s |
Exposure energy/hogel | 150 mJ |
Size of a hogel Size of HOE | 15.36 × 8.64 mm 30.72 × 17.28 mm |
Total exposure time | 294.8 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Sang, X.; Li, H.; Xiao, R.; Zhong, C.; Yan, B.; Sun, Z.; Dong, Y. High Resolution Multiview Holographic Display Based on the Holographic Optical Element. Micromachines 2023, 14, 147. https://doi.org/10.3390/mi14010147
Qin X, Sang X, Li H, Xiao R, Zhong C, Yan B, Sun Z, Dong Y. High Resolution Multiview Holographic Display Based on the Holographic Optical Element. Micromachines. 2023; 14(1):147. https://doi.org/10.3390/mi14010147
Chicago/Turabian StyleQin, Xiujuan, Xinzhu Sang, Hui Li, Rui Xiao, Chongli Zhong, Binbin Yan, Zhi Sun, and Yu Dong. 2023. "High Resolution Multiview Holographic Display Based on the Holographic Optical Element" Micromachines 14, no. 1: 147. https://doi.org/10.3390/mi14010147
APA StyleQin, X., Sang, X., Li, H., Xiao, R., Zhong, C., Yan, B., Sun, Z., & Dong, Y. (2023). High Resolution Multiview Holographic Display Based on the Holographic Optical Element. Micromachines, 14(1), 147. https://doi.org/10.3390/mi14010147