Characterization of Femtosecond Laser and Porcine Crystalline Lens Interactions by Optical Microscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Wide-Field Transmitted-Light Microscopy of the Whole Lens
3.2. Phase-Contrast Imaging on Cross Sections
3.3. Time-Resolved Imaging
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Juhasz, T.; Loesel, F.; Kurtz, R.; Horvath, C.; Bille, J.; Mourou, G. Corneal refractive surgery with femtosecond lasers. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 902–910. [Google Scholar] [CrossRef]
- Palanker, D.V.; Blumenkranz, M.S.; Andersen, D.; Wiltberger, M.; Marcellino, G.; Gooding, P.; Angeley, D.; Schuele, G.; Woodley, B.; Simoneau, M.; et al. Femtosecond Laser—Assisted Cataract Surgery with Integrated Optical Coherence Tomography. Sci. Transl. Med. 2010, 2, 58ra85. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.; Schoenlein, R.W.; Puliafito, C.A.; Dobi, E.T.; Birngruber, R.; Fujimoto, J.G. Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625 nm. Arch. Ophthalmol. 1989, 107, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Kymionis, G.D.; Kankariya, V.P.; Plaka, A.D.; Reinstein, D.Z. Femtosecond Laser Technology in Corneal Refractive Surgery: A Review. J. Refract. Surg. 2012, 28, 912–920. [Google Scholar] [CrossRef]
- Shah, R.; Shah, S.; Sengupta, S. Results of small incision lenticule extraction: All-in-one femtosecond laser refractive surgery. J. Cataract. Refract. Surg. 2011, 37, 127–137. [Google Scholar] [CrossRef]
- Bernard, A.; Gain, P.; Mauclair, C.; Thuret, G. Device and Method for Cutting a Cornea or Crystalline Lens. U.S. Patent 20170304118A1, 26 October 2017. [Google Scholar]
- Vogel, A.; Venugopalan, V. Mechanisms of Pulsed Laser Ablation of Biological Tissues. Chem. Rev. 2003, 103, 577–644. [Google Scholar] [CrossRef] [Green Version]
- Vogel, A.; Linz, N.; Freidank, S.; Paltauf, G. Femtosecond-Laser-Induced Nanocavitation inWater: Implications for Optical Breakdown Threshold and Cell Surgery. Phys. Rev. Lett. 2008, 100, 038102. [Google Scholar] [CrossRef] [Green Version]
- Tinne, N.; Knoop, G.; Kallweit, N.; Veith, S.; Bleeker, S.; Lubatschowski, H.; Krüger, A.; Ripken, T. Effects of cavitation bubble interaction with temporally separated fs-laser pulses. J. Biomed. Opt. 2014, 19, 048001. [Google Scholar] [CrossRef] [Green Version]
- Tinne, N.; Kaune, B.; Krüger, A.; Ripken, T. Interaction Mechanisms of Cavitation Bubbles Induced by Spatially and Temporally Separated fs-Laser Pulses. PLoS ONE 2014, 9, e0114437. [Google Scholar] [CrossRef]
- Arba-Mosquera, S.; Naubereit, P.; Sobutas, S.; Verma, S. Analytical optimization of the cutting efficiency for generic cavitation bubbles. Biomed. Opt. Express 2021, 12, 3819–3835. [Google Scholar] [CrossRef]
- Požar, T.; Petkovšek, R. Cavitation induced by shock wave focusing in eye-like experimental configurations. Biomed. Opt. Express 2020, 11, 432–447. [Google Scholar] [CrossRef] [Green Version]
- Kuszak, J.R.; Bertram, B.A.; Rae, J.L. The Ordered Structure of the Crystalline Lens. In Development of Order in the Visual System, Cell and Developmental Biology of the Eye; Hilfer, S.R., Sheffield, J.B., Eds.; Springer: New York, NY, USA, 1986; pp. 35–60. [Google Scholar] [CrossRef]
- Stachs, O.; Schumacher, S.; Hovakimyan, M.; Fromm, M.; Heisterkamp, A.; Lubatschowski, H.; Guthoff, R. Visualization of femtosecond laser pulse–induced microincisions inside crystalline lens tissue. J. Cataract. Refract. Surg. 2009, 35, 1979–1983. [Google Scholar] [CrossRef]
- Ripken, T.; Oberheide, U.; Fromm, M.; Schumacher, S.; Gerten, G.; Lubatschowski, H. fs-Laser induced elasticity changes to improve presbyopic lens accommodation. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 246, 897–906. [Google Scholar] [CrossRef]
- Strenk, S.A.; Strenk, L.M.; Koretz, J.F. The mechanism of presbyopia. Prog. Retin. Eye Res. 2005, 24, 379–393. [Google Scholar] [CrossRef]
- Truscott, R.J. Presbyopia. Emerging from a blur towards an understanding of the molecular basis for this most common eye condition. Exp. Eye Res. 2009, 88, 241–247. [Google Scholar] [CrossRef]
- Bron, A.J.; Vrensen, G.F.J.M.; Koretz, J.; Maraini, G.; Harding, J.J. The Ageing Lens. Ophthalmologica 2000, 214, 86–104. [Google Scholar] [CrossRef]
- Aguilar, A.; Bernard, A.; De Saint-Jean, A.; Baubeau, E.; Bertail, A.; Mauclair, C. Astigmatism and spherical aberrations as main causes for degradation of ultrafast laser-induced cavitation in water. OSA Contin. 2021, 4, 2905–2917. [Google Scholar] [CrossRef]
- Lim, J.C.; Walker, K.L.; Sherwin, T.; Schey, K.L.; Donaldson, P.J. Confocal Microscopy Reveals Zones of Membrane Remodeling in the Outer Cortex of the Human Lens. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4304–4310. [Google Scholar] [CrossRef]
- Bhuyan, M.K.; Soleilhac, A.; Somayaji, M.; Itina, T.E.; Antoine, R.; Stoian, R. High fidelity visualization of multiscale dynamics of laser-induced bubbles in liquids containing gold nanoparticles. Sci. Rep. 2018, 8, 9665. [Google Scholar] [CrossRef]
- Taylor, V.; Al-Ghoul, K.; Lane, C.; Davis, V.A.; Kuszak, J.; Costello, M.J. Morphology of the normal human lens. Am. J. Ophthalmol. 1996, 122, 460–461. [Google Scholar] [CrossRef]
- Delamere, N.A. Duane’s Ophthalmology (Revised Edition on 2006). The Lens. Vol. Foundation, 2006; Volume 2, Chapter 10. Available online: http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v8/v8c010.html (accessed on 15 September 1982).
- Krueger, R.R.; Kuszak, J.; Lubatschowski, H.; Myers, R.I.; Ripken, T.; Heisterkamp, A. First safety study of femtosecond laser photodisruption in animal lenses: Tissue morphology and cataractogenesis. J. Cataract. Refract. Surg. 2005, 31, 2386–2394. [Google Scholar] [CrossRef] [PubMed]
- Duocastella, M.; Fernández-Pradas, J.M.; Morenza, J.L.; Serra, P. Time-resolved imaging of the laser forward transfer of liquids. J. Appl. Phys. 2009, 106, 084907. [Google Scholar] [CrossRef] [Green Version]
- Haustrup, N.; Sedao, X.X.X.; Conneely, A.J.; O’Connor, G.M. Laser-Induced Liquefaction of Tetrafluoroethane and Sulfur Hexafluoride Gases. J. Phys. Chem. C 2011, 115, 5028–5037. [Google Scholar] [CrossRef]
- Pérez-Gutiérrez, F.G.; Camacho-Lopez, S.; Aguilar, G. Time-resolved study of the mechanical response of tissue phantoms to nanosecond laser pulses. J. Biomed. Opt. 2011, 16, 115001. [Google Scholar] [CrossRef] [PubMed]
Pulse Energy | E1 | E2 | E3 | E4 | E5 | E6 | E7 |
---|---|---|---|---|---|---|---|
µJ | 2.31 | 1.38 | 1.36 | 1 | 0.82 | 0.68 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Moussa, O.; Talbi, A.; Poinard, S.; Garcin, T.; Gauthier, A.-S.; Thuret, G.; Gain, P.; Maurer, A.; Sedao, X.; Mauclair, C. Characterization of Femtosecond Laser and Porcine Crystalline Lens Interactions by Optical Microscopy. Micromachines 2022, 13, 2128. https://doi.org/10.3390/mi13122128
Ben Moussa O, Talbi A, Poinard S, Garcin T, Gauthier A-S, Thuret G, Gain P, Maurer A, Sedao X, Mauclair C. Characterization of Femtosecond Laser and Porcine Crystalline Lens Interactions by Optical Microscopy. Micromachines. 2022; 13(12):2128. https://doi.org/10.3390/mi13122128
Chicago/Turabian StyleBen Moussa, Olfa, Abderazek Talbi, Sylvain Poinard, Thibaud Garcin, Anne-Sophie Gauthier, Gilles Thuret, Philippe Gain, Aurélien Maurer, Xxx Sedao, and Cyril Mauclair. 2022. "Characterization of Femtosecond Laser and Porcine Crystalline Lens Interactions by Optical Microscopy" Micromachines 13, no. 12: 2128. https://doi.org/10.3390/mi13122128
APA StyleBen Moussa, O., Talbi, A., Poinard, S., Garcin, T., Gauthier, A. -S., Thuret, G., Gain, P., Maurer, A., Sedao, X., & Mauclair, C. (2022). Characterization of Femtosecond Laser and Porcine Crystalline Lens Interactions by Optical Microscopy. Micromachines, 13(12), 2128. https://doi.org/10.3390/mi13122128