Internet of Things-Based ECG and Vitals Healthcare Monitoring System
Abstract
:1. Introduction
- The device must display an ECG signal on a local display screen, and it records the data on a server.
- To show the signal on a custom mobile application, the signal must be delivered over Bluetooth.
- It should include capabilities that enable MATLAB integration; the ECG signal should be sent to MATLAB for further analysis. R-wave detection must be used to compute and display the heart rate on all of the display outputs.
- All the user interfaces should record and show additional information such as blood oxygen level (SpO2) and skin temperature. The sensor data should be delivered via a WiFi connection to a ThingSpeak server.
- The final prototype design should be printed on a high-quality PCB and housed in a protective casing. The device must be both portable and wireless.
- The device must include a low-power sleep mode to enhance the battery’s lifetime and enhance the product’s portability requirements.
2. Materials and Methods
2.1. Analog Front End (AFE)
2.2. Choice of Microcontroller
2.3. Additional Components
2.3.1. Temperature Sensor
2.3.2. Blood Oxygen Sensor
2.4. Data Output and Communications
2.4.1. Bluetooth Mobile Application
2.4.2. Web Server
3. System Overview
3.1. Component Block Diagram
3.2. System Flow Design
4. PCB Design
5. Arduino Code Design
5.1. System Flow Design
5.2. Code Design
5.2.1. OLED Live ECG Signal
5.2.2. Lead-Off Detection
5.2.3. Sleep Mode
5.2.4. MATLAB Data Import
6. Android Application
ThingSpeak
7. ECG Signal Processing
QRS Complex Detection Algorithm
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Swaroop, K.N.; Chandu, K.; Gorrepotu, R.; Deb, S. A Health Monitoring System for Vital Signs Using IoT. Internet Things 2019, 5, 116–129. [Google Scholar] [CrossRef]
- Thwaites, C.L.; Ngoc Dinh, M.; Nygate, J.; Hoang Minh Tu, V.; van Cuong, N.; Anh, T.T.; McBride, A.; Huynh, T.; Chau, N.H.; Lâm, H.M.; et al. New Technologies to Improve Healthcare in Low- and Middle-Income Countries: Global Grand Challenges Satellite Event, Oxford University Clinical Research Unit, Ho Chi Minh City, 17th-18th September 2019. Wellcome Open Res. 2020, 5, 17–18. [Google Scholar] [CrossRef]
- Soin, N.; Fishlock, S.J.; Kelsey, C.; Smith, S. Triboelectric Effect Enabled Self-Powered, Point-of-Care Diagnostics: Opportunities for Developing ASSURED and REASSURED Devices. Micromachines 2021, 12, 337. [Google Scholar] [CrossRef] [PubMed]
- Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 15 July 2022).
- Roth, G.A.; Johnson, C.O.; Abate, K.H.; Abd-Allah, F.; Ahmed, M.; Alam, K.; Alam, T.; Alvis-Guzman, N.; Ansari, H.; Ärnlöv, J.; et al. The Burden of Cardiovascular Diseases Among US States, 1990-2016. JAMA Cardiol. 2018, 3, 375–389. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; de Ferranti, S.; Després, J.P.; Fullerton, H.J.; Howard, V.J.; et al. Executive Summary: Heart Disease and Stroke Statistics-2015 Update: A Report from the American Heart Association. Circulation 2015, 131, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Nichols, M.; Townsend, N.; Scarborough, P.; Rayner, M. Cardiovascular Disease in Europe 2014: Epidemiological Update. Eur. Heart J. 2014, 35, 2950–2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, S.; Bradshaw, C.; Prabhakaran, D. Prevention and Management of CVD in LMICs: Why Do Ethnicity, Culture, and Context Matter? BMC Med. 2020, 18, 7. [Google Scholar] [CrossRef]
- Navarro, C.; Fishlock, S.J.; Steele, D.N.; Puttaswamy, S.V.; Lubarsky, G.; Raj, S.; McLaughlin, J. A Point-of-Care Measurement of NT-ProBNP for Heart Failure Patients. IEEE Access 2020, 8, 138973–138983. [Google Scholar] [CrossRef]
- Faruk, N.; Abdulkarim, A.; Emmanuel, I.; Folawiyo, Y.Y.; Adewole, K.S.; Mojeed, H.A.; Oloyede, A.A.; Olawoyin, L.A.; Sikiru, I.A.; Nehemiah, M.; et al. A Comprehensive Survey on Low-Cost ECG Acquisition Systems: Advances on Design Specifications, Challenges and Future Direction. Biocybern. Biomed. Eng. 2021, 41, 474–502. [Google Scholar] [CrossRef]
- Chamadiya, B.; Mankodiya, K.; Wagner, M.; Hofmann, U.G. Textile-Based, Contactless ECG Monitoring for Non-ICU Clinical Settings. J. Ambient. Intell. Humaniz. Comput. 2013, 4, 791–800. [Google Scholar] [CrossRef]
- Kwon, J.M.; Jeon, K.H.; Kim, H.M.; Kim, M.J.; Lim, S.M.; Kim, K.H.; Song, P.S.; Park, J.; Choi, R.K.; Oh, B.H. Comparing the Performance of Artificial Intelligence and Conventional Diagnosis Criteria for Detecting Left Ventricular Hypertrophy Using Electrocardiography. EP Eur. 2020, 22, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Siva Nagendra Reddy, P.; Vishnu Vardhan, D.; Tharun Kumar Reddy, K.; Ajay Kumar Reddy, P. An IoT-Based Low-Cost Weather Monitoring and Alert System Using Node MCU. Smart Innov. Syst. Technol. 2018, 77, 265–274. [Google Scholar] [CrossRef]
- Hutchison, A.W.; Malaiapan, Y.; Jarvie, I.; Barger, B.; Watkins, E.; Braitberg, G.; Kambourakis, T.; Cameron, J.D.; Meredith, I.T. Prehospital 12-Lead ECG to Triage ST-Elevation Myocardial Infarction and Emergency Department Activation of the Infarct Team Significantly Improves Door-to-Balloon Times: Ambulance Victoria and Monash Heart Acute Myocardial Infarction (MonAMI) 12-Lead ECG Project. Circ. Cardiovasc. Interv. 2009, 2, 528–534. [Google Scholar] [CrossRef] [Green Version]
- Fensli, R.; Gunnarson, E.; Gundersen, T. A Wearable ECG-Recording System for Continuous Arrhythmia Monitoring in a Wireless Tele-Home-Care Situation. In Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems, Dublin, Ireland, 23–24 June 2005; pp. 407–412. [Google Scholar] [CrossRef]
- Gionfriddo, W.J.; Laidlaw, D.W.; Mark Estes, N.A. Ambulatory Electrocardiography. In Cardiology Procedures; Springer: Cham, Switzerland, 2022; pp. 159–167. [Google Scholar] [CrossRef]
- Petrenas, A.; Marozas, V.; Jaruševičius, G.; Sörnmo, L. A Modified Lewis ECG Lead System for Ambulatory Monitoring of Atrial Arrhythmias. J. Electrocardiol. 2015, 48, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M.; Al-Ali, A.; Mohamed, A.; Ward, R. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach. Diagnostics 2018, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Guan, K.; Shao, M.; Wu, S. A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway. J. Healthc. Eng. 2017, 2017, 5843504. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Sundaravaradhan, S. Challenges and Opportunities in IoT Healthcare Systems: A Systematic Review. SN Appl. Sci. 2020, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tuli, S.; Basumatary, N.; Gill, S.S.; Kahani, M.; Arya, R.C.; Wander, G.S.; Buyya, R. HealthFog: An Ensemble Deep Learning Based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in Integrated IoT and Fog Computing Environments. Future Gener. Comput. Syst. 2020, 104, 187–200. [Google Scholar] [CrossRef]
- Oueida, S.; Kotb, Y.; Aloqaily, M.; Jararweh, Y.; Baker, T. An Edge Computing Based Smart Healthcare Framework for Resource Management. Sensors 2018, 18, 4307. [Google Scholar] [CrossRef] [Green Version]
- Sodhro, A.H.; Luo, Z.; Sangaiah, A.K.; Baik, S.W. Mobile Edge Computing Based QoS Optimization in Medical Healthcare Applications. Int. J. Inf. Manag. 2019, 45, 308–318. [Google Scholar] [CrossRef]
- El-Rashidy, N.; El-Sappagh, S.; Riazul Islam, S.M.; El-Bakry, H.M.; Abdelrazek, S. Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges. Diagnostics 2021, 11, 607. [Google Scholar] [CrossRef] [PubMed]
- Mamdiwar, S.D.; Akshith, R.; Shakruwala, Z.; Chadha, U.; Srinivasan, K.; Chang, C.Y. Recent Advances on IoT-Assisted Wearable Sensor Systems for Healthcare Monitoring. Biosensors 2021, 11, 372. [Google Scholar] [CrossRef] [PubMed]
- Serhani, M.A.; El Kassabi, H.T.; Ismail, H.; Navaz, A.N. ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges. Sensors 2020, 20, 1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuorinen, T.; Noponen, K.; Vehkaoja, A.; Onnia, T.; Laakso, E.; Leppänen, S.; Mansikkamäki, K.; Seppänen, T.; Mäntysalo, M. Validation of Printed, Skin-Mounted Multilead Electrode for ECG Measurements. Adv. Mater. Technol. 2019, 4, 1900246. [Google Scholar] [CrossRef]
- Lv, W.; Guo, J. Real-Time ECG Signal Acquisition and Monitoring for Sports Competition Process Oriented to the Internet of Things. Measurement 2021, 169, 108359. [Google Scholar] [CrossRef]
- Carney, R.M.; Freedland, K.E.; Steinmeyer, B.C.; Rubin, E.H.; Stein, P.K.; Rich, M.W. Nighttime Heart Rate Predicts Response to Depression Treatment in Patients with Coronary Heart Disease. J. Affect. Disord. 2016, 200, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Valenza, G.; Nardelli, M.; Lanata, A.; Gentili, C.; Bertschy, G.; Kosel, M.; Scilingo, E.P. Predicting Mood Changes in Bipolar Disorder Through Heartbeat Nonlinear Dynamics. IEEE J. Biomed. Health Inform. 2016, 20, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Babusiak, B.; Borik, S.; Smondrk, M. Two-Electrode ECG for Ambulatory Monitoring with Minimal Hardware Complexity. Sensors 2020, 20, 2386. [Google Scholar] [CrossRef]
- Pitman, B.M.; Chew, S.-H.; Wong, C.X.; Jaghoori, A.; Iwai, S.; Thomas, G.; Chew, A.; Sanders, P.; Lau, D.H. Performance of a Mobile Single-Lead Electrocardiogram Technology for Atrial Fibrillation Screening in a Semirural African Population: Insights from “The Heart of Ethiopia: Focus on Atrial Fibrillation” (TEFF-AF) Study. JMIR Mhealth Uhealth 2021, 9, e24470. [Google Scholar] [CrossRef]
- Soni, A.; Earon, A.; Handorf, A.; Fahey, N.; Talati, K.; Bostrom, J.; Chon, K.; Napolitano, C.; Chin, M.; Sullivan, J.; et al. High Burden of Unrecognized Atrial Fibrillation in Rural India: An Innovative Community-Based Cross-Sectional Screening Program. JMIR Public Health Surveill. 2016, 2, e6517. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.N.; Tiwari, A.K. Optimal Selection of Wavelet Basis Function Applied to ECG Signal Denoising. Digit. Signal Processing 2006, 16, 275–287. [Google Scholar] [CrossRef]
- Raja, K.; Saravanan, S.; Anitha, R.; Priya, S.S.; Subhashini, R. Design of a Low Power ECG Signal Processor for Wearable Health System-Review and Implementation Issues. In Proceedings of the 2017 11th International Conference on Intelligent Systems and Control, ISCO 2017, Coimbatore, India, 5–6 February 2017; pp. 383–387. [Google Scholar] [CrossRef]
- Gifari, M.W.; Zakaria, H.; Mengko, R. Design of ECG Homecare:12-Lead ECG Acquisition Using Single Channel ECG Device Developed on AD8232 Analog Front End. In Proceedings of the 5th International Conference on Electrical Engineering and Informatics: Bridging the Knowledge between Academic, Industry, and Community, ICEEI 2015, Denpasar, Indonesia, 10–11 August 2015; pp. 371–376. [Google Scholar] [CrossRef]
- Agung, M.A. Basari 3-Lead Acquisition Using Single Channel ECG Device Developed on AD8232 Analog Front End for Wireless ECG Application. AIP Conf. Proc. 2017, 1817, 040015. [Google Scholar] [CrossRef]
- Iskandar, W.J.; Roihan, I.; Koestoer, R.A. Prototype Low-Cost Portable Electrocardiogram (ECG) Based on Arduino-Uno with Bluetooth Feature. AIP Conf. Proc. 2019, 2193, 050019. [Google Scholar] [CrossRef]
- Single-Lead, Heart Rate Monitor Front End. Available online: www.analog.com (accessed on 16 July 2022).
- HM301D-Diagnostic Quality Acquisition System for Bio-Electric Sensors and Bio-Impedance Measurements-STMicroelectronics. Available online: https://www.st.com/en/data-converters/hm301d.html (accessed on 16 July 2022).
- ADS1191 Data Sheet, Product Information and Support|TI.Com. Available online: https://www.ti.com/product/ADS1191 (accessed on 16 July 2022).
- Dioren Rumpa, L.; Suluh, S.; Hendrika Ramopoly, I.; Jefriyanto, W. Development of ECG Sensor Using Arduino Uno and E-Health Sensor Platform: Mood Detection from Heartbeat. J. Phys. Conf. Ser. 2020, 1528, 012043. [Google Scholar] [CrossRef]
- Güvenç, H. Wireless ECG Device with Arduino. In Proceedings of the TIPTEKNO 2020-Tip Teknolojileri Kongresi-2020 Medical Technologies Congress, TIPTEKNO 2020, Antalya, Turkey, 19–20 November 2020. [Google Scholar] [CrossRef]
- Bravo-Zanoguera, M.; Cuevas-González, D.; Reyna, M.A.; García-Vázquez, J.P.; Avitia, R.L. Fabricating a Portable ECG Device Using AD823X Analog Front-End Microchips and Open-Source Development Validation. Sensors 2020, 20, 5962. [Google Scholar] [CrossRef] [PubMed]
- Tătaru, A.I. Drugă; CN Designing and Realization an ECG Based the Arduino Mega 2560 Development Board. IOP Conf. Ser. Mater. Sci. Eng. 2019, 568, 012081. [Google Scholar] [CrossRef] [Green Version]
- Digital Non-Contact Infrared Thermometer (MLX90614) #Melexis. Available online: https://www.melexis.com/en/product/mlx90614/digital-plug-play-infrared-thermometer-to-can (accessed on 16 July 2022).
- Marques, G.; Pitarma, R. Non-Contact Infrared Temperature Acquisition System Based on Internet of Things for Laboratory Activities Monitoring. Procedia Comput. Sci. 2019, 155, 487–494. [Google Scholar] [CrossRef]
- Jin, G.; Zhang, X.; Fan, W.; Liu, Y.; He, P. Design of Non-Contact Infra-Red Thermometer Based on the Sensor of MLX90614. Open Autom. Control. Syst. J. 2015, 7, 8–20. [Google Scholar] [CrossRef]
- MAX30100 Pulse Oximeter and Heart-Rate Sensor IC for Wearable Health|Maxim Integrated. Available online: https://www.maximintegrated.com/en/products/sensors/MAX30100.html (accessed on 16 July 2022).
- Optics & Photonics News-OLED Versus LCD: Who Wins? Available online: https://www.optica-opn.org/home/articles/volume_26/february_2015/departments/oled_versus_lcd_who_wins/ (accessed on 16 July 2022).
- van Heerden, A.; Tomlinson, M.; Swartz, L. Point of Care in Your Pocket: A Research Agenda for the Field of m-Health. Bull. World Health Organ. 2012, 90, 393–394. [Google Scholar] [CrossRef]
- Top, A.; Gökbulut, M. Android Application Design with MIT App Inventor for Bluetooth Based Mobile Robot Control. Wirel. Pers. Commun. 2022, 126, 1403–1429. [Google Scholar] [CrossRef]
- Mobile OS Market Share 2021|Statista. Available online: https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/ (accessed on 16 July 2022).
- Singh, P.; Jasuja, A. IoT Based Low-Cost Distant Patient ECG Monitoring System. In Proceedings of the IEEE International Conference on Computing, Communication and Automation, ICCCA 2017, Greater Noida, India, 5–6 May 2017; pp. 1330–1334. [Google Scholar] [CrossRef]
- Kadarina, T.M.; Priambodo, R. Monitoring Heart Rate and SpO2 Using Thingsboard IoT Platform for Mother and Child Preventive Healthcare. IOP Conf. Ser. Mater. Sci. Eng. 2018, 453, 012028. [Google Scholar] [CrossRef]
- Bharadwaj, K.; Dhawan, R.; Ray, M.K.; Mahalakshmi, P. Wi-Fi-Based Low-Cost Monitoring of ECG and Temperature Parameters Using Arduino and ThingSpeak. Lect. Notes Electr. Eng. 2018, 442, 637–646. [Google Scholar] [CrossRef]
- Liu, F.; Liu, C.; Jiang, X.; Zhang, Z.; Zhang, Y.; Li, J.; Wei, S. Performance Analysis of Ten Common QRS Detectors on Different ECG Application Cases. J. Healthc. Eng. 2018, 2018, 9050812. [Google Scholar] [CrossRef] [Green Version]
- Drazen, E.; Mann, N.; Borun, R.; Laks, M.; Bersen, A. Survey of Computer-Assisted Electrocardiography in the United States. J. Electrocardiol. 1988, 21, S98–S104. [Google Scholar] [CrossRef] [PubMed]
- Rautaharju, P.M. Eyewitness to History: Landmarks in the Development of Computerized Electrocardiography. J. Electrocardiol. 2016, 49, 1–6. [Google Scholar] [CrossRef]
- Köhler, B.U.; Hennig, C.; Orglmeister, R. The Principles of Software QRS Detection. IEEE Eng. Med. Biol. Mag. 2002, 21, 42–57. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef]
- Rubel, P.; Fayn, J.; Macfarlane, P.W.; Pani, D.; Schlögl, A.; Värri, A. The History and Challenges of SCP-ECG: The Standard Communication Protocol for Computer-Assisted Electrocardiography. Hearts 2021, 2, 384–409. [Google Scholar] [CrossRef]
ECG Device | Single-Lead | Display Capability | Storage Facility | Built-in Battery | Data Transmission | Cloud-Based Services | Smart-Phone Interface | FDA Approval | Cost ($US) |
---|---|---|---|---|---|---|---|---|---|
Kardia mobile | √ | √ | ✗ | √ | √ | ✗ | √ | √ | $89 |
Omron HS | √ | √ | √ | ✗ | √ | ✗ | ✗ | ✗ | $387 |
Heal Force | √ | √ | √ | √ | √ | √ | ✗ | √ | $170 |
Instant Check | √ | √ | √ | √ | ✗ | ✗ | ✗ | √ | $422 |
Heart Check CardiBeat | √ | ✗ | √ | √ | √ | √ | √ | √ | $129 |
Nuvant mobile | √ | ✗ | √ | √ | √ | √ | √ | √ | $754 |
Afibalert | √ | √ | ✗ | ✗ | ✗ | ✗ | ✗ | √ | $449 |
ECG Check | √ | √ | √ | √ | √ | √ | √ | √ | $80 |
Dimetek | √ | √ | √ | √ | ✗ | ✗ | ✗ | ✗ | NA |
Ziopatch | √ | ✗ | √ | √ | √ | √ | √ | √ | NA |
Zenicore | √ | ✗ | √ | √ | √ | √ | ✗ | ✗ | NA |
Reka E100 | √ | ✗ | √ | √ | √ | √ | √ | ✗ | NA |
Read my heart | √ | √ | √ | √ | √ | ✗ | ✗ | √ | NA |
Medtronic Reveal | √ | ✗ | √ | √ | √ | √ | ✗ | ✗ | NA |
Smart-vest (multi-lead) | ✗ | ✗ | ✗ | √ | √ | √ | √ | ✗ | NA |
This work | √ | √ | √ | √ | √ | √ | √ | ✗ | $131 |
Parameter | AD8232 [39] | HM301D [40] | ADS1191 [41] |
---|---|---|---|
Manufacturer | Analog Devices | ST Microelectronics | Texas Instruments |
Dimensions (mm) | 4 × 4 | 6 × 6 | 5 × 5 |
Operating Voltage | 2–3.5 V | 1.62–3.6 V | 1.7–3.6 V |
Operating Current (operating power) | 170 µA | 1.3 mA | (335 µW/channel) |
Output Impedance | 10 GΩ | 50 MΩ | 100 MΩ |
Gain | 100 V/V | 64 V/V | 12 V/V |
Low Power Mode | √ | √ | √ |
Leads-off Detection | √ | √ | √ |
ECG Channel | 1 | 3 | 2 |
Chip Cost | $5.00 | $5.00 | $5.00 |
Parameter | Arduino Uno | Arduino Nano | Arduino MKR 1010 |
---|---|---|---|
Dimensions (mm) | 68.6 × 53.4 | 45 × 18 | 61.5 × 25 |
Processor | ATmega328P | ATmega328 | SAMD21 |
Clock Speed | 16 MHz | 16 MHz | 48 MHz |
Flash Memory | 32 KB | 32 KB | 256 KB |
SRAM | 2 KB | 2 KB | 32 KB |
Digital I/O Pins | 14 | 22 | 21 |
Digital PWM Pins | 6 | 6 | 13 |
Analog Input Pins | 6 | 8 | 7 |
ADC Resolution | 10-bit | 10-bit | 12-bit |
WiFi | ✗ | ✗ | √ |
Bluetooth | ✗ | ✗ | √ |
On-Board Charging | ✗ | ✗ | √ |
Price | £20.00 | £18.00 | £27.90 |
Release Date | September 2010 | May 2008 | June 2018 |
- | SpO2 Sensor | Temperature Sensor | ||||
---|---|---|---|---|---|---|
Parameter | MAX30100 | MAX30101 | MAX30102 | DS18B20 | MLX90614 | DHT11 |
Manufacturer | Maxim Int. | Maxim Int. | Maxim Int. | Maxim Int. | Melexis | |
Dimensions (mm) | 5.6 × 2.8 × 1.2 | 5.6 × 3.3 × 1.5 | 5.6 × 3.3 × 1.5 | 17.10 × 10 dia. | 15.5 × 12 × 5.5 | |
Operating Voltage | 3.3 V | 5 V | 3.3 V | 3–5.5 V | 3.3 V | 3.5–5.5 V |
Operating Current | 600 µA | 600 µA | 600 µA | 1 mA | 1.5 mA | 300 µA |
Low Power Mode | √ | √ | √ | ✗ | √ | |
Low Power Current | 0.7 µA | 0.7 µA | 0.7 µA | - | 60 µA | |
Interface | I2C | I2C | I2C | 1-wire | I2C | I2C |
Parameter | 16 × 2 LCD | 1.3” OLED | 0.91” OLED |
Resolution | 16 × 2 | 128 × 64 | 128 × 32 |
Interface | I2C | I2C | I2C |
Power Consumption | 50 mA | 11 mA | 20 mA |
Operating Temperature | −10 to 60 °C | −20 to 70 °C | −40 to 85 °C |
Component | Description | Designator | Quantity | Unit Price (£) | Total Price (£) |
---|---|---|---|---|---|
GRM1885C1H152JA01D | CAP 0603, 1500 pF, 50 V | C1 | 1 | 0.045 | 0.045 |
1 nF | CAP 1 nF 50 V 0603 | C2 | 1 | 0.38 | 0.38 |
CC0603KRX7R9BB103 | CAP 10000PF 50 V 0603 | C3 | 1 | 0.82 | 0.82 |
C0805C334K4RACTU | CAP 0.33 UF 16 V 0805 | C4, C6 | 2 | 0.0912 | 0.018 |
CC0603KRX7R7BB104 | CAP 0.1 UF 16 V 0603 | C5, C7 | 2 | 0.053 | 0.106 |
3-Pin Switch Mode type | Header, 3-Pin | Mode selection pin | 1 | 0.58 | 0.58 |
ECG in header | Header, 3-Pin | ECG In | 1 | 1.72 | 1.72 |
AD8232 Dev Board option | Header, 6-Pin | DevBoard Option | 1 | 0.64 | 0.64 |
BT module | Header, 4-Pin | HC-05 | 1 | 6.99 | 6.99 |
MKR | MKR1010 | IC1 | 1 | 25.00 | 25.00 |
AD8232ACPZ-R7 | Integrated Circuit | IC2 | 1 | 4.85 | 4.85 |
Oxygen Sensor | Header, 7-Pin | IC3 | 1 | 4.45 | 4.45 |
Interrupt Switch | Header, 2-Pin | Interrupt switch | 1 | 0.58 | 0.58 |
Audio Jack for ECG in | 35RASMT4BHNTRX | J1 | 1 | 3.00 | 3.00 |
LCD Display | Header, 4-Pin | LCD | 1 | 6.49 | 6.49 |
Signal out LED | Header, 2-Pin | Signal Out Header | 1 | 0.24 | 0.24 |
Power LED | Header, 2-Pin | PWR LED | 1 | 0.24 | 0.24 |
1RT0603BRD07180KL | RES 180 K 0603 | R3, R4 | 2 | 0.10 | 0.20 |
CRCW0603360KFKEA | RES 360K 0603 | R5 | 1 | 0.10 | 0.10 |
1 M | RES 1 M 0201 | R6, R7, R9 | 3 | 0.10 | 0.30 |
CRCW0603100KFKEA | RES 100 k 0603 | R8 | 1 | 0.097 | 0.097 |
1.4 M | RES 1.4 M 0603 | R12 | 1 | 0.086 | 0.086 |
DNF | DNF | R16 | 1 | - | - |
RC0603JR-070RL | RES, 0, 0603 | R17, R19 | 2 | 0.086 | 0.172 |
DNF | DNF | R18, R20 | 2 | - | - |
RC0603FR-0710KL | RES, 10 k, 0603 | R21 | 1 | 0.10 | 0.10 |
CRCW040210K0FKED | RES 10 K 0402 | R100, R101 | 2 | 0.10 | 0.20 |
CRCW0402220RFKED | RES 220, 0402 | R102, R103, R104, R105 | 4 | 0.10 | 0.40 |
LED2 | Header, 4-Pin | RGB LED | 1 | 0.99 | 0.99 |
MLX90614 | Infrared temperature sensor | Temp | 1 | 30.31 | 30.31 |
1300 mAh LiPo | - | Batt | 1 | 17.39 | 17.39 |
Micro USB Extension | - | USB EXT | 1 | 3.49 | 3.49 |
Audio Jack Extension | - | Audio EXT | 1 | 2.68 | 2.68 |
Subject | Infrared Thermometer | MLX90614 | Pulse Oximeter | MAX30100 |
---|---|---|---|---|
Patient 1 Patient 2 Patient 3 | 32.0 °C 34.5 °C 33.8 °C | 33.4 °C 35.8 °C 34.7 °C | 96% 94% 94% | 94% 96% 94% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heaney, J.; Buick, J.; Hadi, M.U.; Soin, N. Internet of Things-Based ECG and Vitals Healthcare Monitoring System. Micromachines 2022, 13, 2153. https://doi.org/10.3390/mi13122153
Heaney J, Buick J, Hadi MU, Soin N. Internet of Things-Based ECG and Vitals Healthcare Monitoring System. Micromachines. 2022; 13(12):2153. https://doi.org/10.3390/mi13122153
Chicago/Turabian StyleHeaney, James, Jamie Buick, Muhammad Usman Hadi, and Navneet Soin. 2022. "Internet of Things-Based ECG and Vitals Healthcare Monitoring System" Micromachines 13, no. 12: 2153. https://doi.org/10.3390/mi13122153
APA StyleHeaney, J., Buick, J., Hadi, M. U., & Soin, N. (2022). Internet of Things-Based ECG and Vitals Healthcare Monitoring System. Micromachines, 13(12), 2153. https://doi.org/10.3390/mi13122153