Synergistic Electric and Thermal Effects of Electrochromic Devices
Abstract
:1. Introduction
2. Typical Electrochromic Devices
2.1. Inorganic Systems
2.2. Organic Systems
2.3. Liquid Crystal–Based Electrochromic Systems
2.4. Reversible Metal Electrodeposition–Based Electrochromic System
3. Performance Parameters of ECDs
3.1. Switching Time and Response Rate
3.2. Optical Modulation and Contrast Ratio
3.3. Colouration Efficiency
3.4. Cycling Stability
3.5. Memory Effect
4. Effect of Temperature on Device Surface Morphology and Crystal Structure
4.1. Morphology of Electrochromic Materials
4.2. Structural of Electrochromic Materials
5. Effect of Temperature on the Energy Required for Electrochemical Reactions
6. ECD Regulation of Environmental Temperature
7. Conclusions and Prospects
- Short cycle life. Ions in the color–changing material embedding off incomplete, resulting in the device’s color contrast being reduced when the period is reduced to 90% or 95% or less to determine the device failure. In addition, there are also problems such as irreversible damage caused by the ion radius being too large and the film peeling off due to the multiple embedding and detachment of the multicolor change layer film, making the device fail. The rational design of the device structure and the design between the electrolyte and the color–changing film layer are also important. Electrode failure, electrolyte decomposition and side reactions during the color change process are also the reasons for the short lifetime of ECDs. For applications such as displays and electronic paper, the device life should be more than 109, and for smart windows, heads–up display glass and other devices with a service life of more than 10 years, the cycle life should be more than 104 times, while most of the reported device cycle life is still in the order of 103. Therefore, it is important to improve the cycle life of the device for a wide range of applications.
- Difficulty in preparing large area devices. The main problem with this part is that the high transparency and high conductivity of the electrodes cannot be obtained at the same time. When the conductivity of the substrate is low, there is a large potential difference between the center and the edge of the device. To ensure the color change effect in the middle position, a large working voltage must be used, which leads to unstable electrodes, uneven electrolyte decomposition and poor reversibility of the color change effect, as we mentioned earlier, affecting the device lifetime.
- Unanticipated side effects. To improve the device color contrast and response time and other performance, we hope that the color–changing material layer has a larger active specific surface area and higher electrochemical reaction activity, but also, because of this often occurs some side reactions. For some inorganic EC materials, the color change process is often accompanied by some unwanted catalytic reactions. It is well known that the response rate of ECD is proportional to the contact area between the electrode, electrolyte and electroactive material, but unfortunately, it is also usually proportional to poor interfacial resistance and side reactions. Therefore, new electrochromic materials are developed, and other improved solutions are used to obtain very good durability and fast switching speed. This approach has been explored by many researchers, but the results are still unsatisfactory.
- High cost of material preparation. Lower preparation cost and a simpler preparation process for high–quality ECDs is the key to their eventual commercialization. Although the price of electrochromic smart windows is decreasing year by year with the development of preparation technology, this technology is a luxury rather than a critical feature compared to standardized transparent glass. Therefore, how to enhance the additional functional attributes of ECDs while reducing the device preparation cost is also an option to be considered, such as some head–up displays, self–functional ECDs and other related research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Date Availability Statement
Conflicts of Interest
References
- Berg, C.A. Energy Conservation through Effective Utilization: Energy consumption could be reduced by improved efficiency of utilization in buildings and in industry. Science 1973, 181, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Granqvist, C.G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Film. 2014, 564, 1–38. [Google Scholar] [CrossRef]
- Cannavale, A.; Ayr, U.; Fiorito, F.; Martellotta, F. Smart electrochromic windows to enhance building energy efficiency and visual comfort. Energies 2020, 13, 1449. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Zhuo, X.; Wang, J. Advanced plasmonic materials for dynamic color display. Adv. Mater. 2018, 30, 1704338. [Google Scholar] [CrossRef] [PubMed]
- Eh, A.L.-S.; Tan, A.W.M.; Cheng, X.; Magdassi, S.; Lee, P.S. Recent Advances in Flexible Electrochromic Devices: Prerequisites, Challenges, and Prospects. Energy Technol. 2018, 6, 33–45. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, M.; Huang, Y.; Pei, Z.; Li, H.; Wang, Z.; Xue, Q.; Zhi, C. Multifunctional energy storage and conversion devices. Adv. Mater. 2016, 28, 8344–8364. [Google Scholar] [CrossRef]
- Mortimer, R.J. Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147–156. [Google Scholar] [CrossRef]
- Livage, J.; Ganguli, D. Sol–gel electrochromic coatings and devices: A review. Sol. Energy Mater. Sol. Cells 2001, 68, 365–381. [Google Scholar] [CrossRef]
- Tong, Z.; Liu, S.; Li, X.; Zhao, J.; Li, Y. Self-supported one-dimensional materials for enhanced electrochromism. Nanoscale Horiz. 2018, 3, 261–292. [Google Scholar] [CrossRef]
- Matthews, J.; Bell, J.; Skryabin, I. Effect of temperature on electrochromic device switching voltages. Electrochim. Acta 1999, 44, 3245–3250. [Google Scholar] [CrossRef]
- Granqvist, C.G. Handbook of Inorganic Electrochromic Materials; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Gillaspie, D.T.; Tenent, R.C.; Dillon, A.C. Metal-oxide films for electrochromic applications: Present technology and future directions. J. Mater. Chem. 2010, 20, 9585–9592. [Google Scholar] [CrossRef]
- Granqvist, C.G. Oxide electrochromics: An introduction to devices and materials. Sol. Energy Mater. Sol. Cells 2012, 99, 1–13. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Cong, S.; Geng, F.; Zhao, Z. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development. Mater. Sci. Eng. R Rep. 2020, 140, 100524. [Google Scholar] [CrossRef]
- Mortimer, R.J. Organic electrochromic materials. Electrochim. Acta 1999, 44, 2971–2981. [Google Scholar]
- Richardson, T.J.; Slack, J.L.; Armitage, R.D.; Kostecki, R.; Farangis, B.; Rubin, M.D. Switchable mirrors based on nickel–magnesium films. Appl. Phys. Lett. 2001, 78, 3047–3049. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, K.; Yamada, Y.; Okada, M. Optical switching of Mg-rich Mg–Ni alloy thin films. Appl. Phys. Lett. 2002, 81, 4709–4711. [Google Scholar] [CrossRef]
- Laik, B.; Carrière, D.; Tarascon, J.-M. Reversible electrochromic system based on aqueous solution containing silver. Electrochim. Acta 2001, 46, 2203–2209. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, K.; Shen, X.; Ning, H.; Liang, H.; Zhong, J.; Xu, W.; Tang, B.; Yao, R.; Peng, J. Physical Simulation Model of WO3 Electrochromic Films Based on Continuous Electron-Transfer Kinetics and Experimental Verification. ACS Appl. Mater. Interfaces 2021, 13, 4768–4776. [Google Scholar] [CrossRef]
- Wen, R.-T.; Malmgren, S.; Granqvist, C.G.; Niklasson, G.A. Degradation Dynamics for Electrochromic WO3 Films under Extended Charge Insertion and Extraction: Unveiling Physicochemical Mechanisms. ACS Appl. Mater. Interfaces 2017, 9, 12872–12877. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, X.; Chen, X.; Zhao, Y.; Sun, W.; Xiao, Y.; Li, S.; Zhao, J.; Li, Y. Long life all-solid-state electrochromic devices by annealing. Sol. Energy Mater. Sol. Cells 2021, 224, 110992. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, Y.; Chi, F.; Liu, S. Synthesis of nitrogen-doped carbon embedded TiO2 films for electrochromic energy storage application. Electrochim. Acta 2021, 390, 138821. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, G.; Liu, S.; Chi, F.; Tian, Y. Electrochromic TiO2 films by a facile solvothermal process: Effect of ethanol content on growth and performance. Opt. Mater. 2021, 122, 111744. [Google Scholar] [CrossRef]
- Dai, B.; Wu, C.; Xie, Y. Boosting the electrochromic performance of TiO2 nanowire film via successively evolving surface structure. Sci. China Chem. 2021, 64, 745–752. [Google Scholar] [CrossRef]
- Yu, C.; Ma, D.; Wang, Z.; Zhu, L.; Guo, H.; Zhu, X.; Wang, J. Solvothermal growth of Nb2O5 films on FTO coated glasses and their electrochromic properties. Ceram. Int. 2021, 47, 9651–9658. [Google Scholar] [CrossRef]
- Lemos, R.M.J.; Balboni, R.D.C.; Cholant, C.M.; Azevedo, C.F.; Pawlicka, A.; Gündel, A.; Flores, W.H.; Avellaneda, C.O. Molybdenum doping effect on sol-gel Nb2O5:Li+ thin films: Investigation of structural, optical and electrochromic properties. Mater. Sci. Semicond. Process. 2021, 134, 105995. [Google Scholar] [CrossRef]
- Han, Q.; Wang, R.; Zhu, H.; Wan, M.; Mai, Y. The preparation and investigation of all thin film electrochromic devices based on reactively sputtered MoO3 thin films. Mater. Sci. Semicond. Process. 2021, 126, 105686. [Google Scholar] [CrossRef]
- Kumar, A.; Prajapati, C.S.; Sahay, P.P. Results on the microstructural, optical and electrochromic properties of spray-deposited MoO3 thin films by the influence of W doping. Mater. Sci. Semicond. Process. 2019, 104, 104668. [Google Scholar] [CrossRef]
- Tai, C.-Y.; Wu, J.-Y. Observation of optical density modulation based on electrochromic tantalum oxide films. J. Phys. D Appl. Phys. 2008, 41, 065303. [Google Scholar] [CrossRef]
- Tepehan, F.Z.; Ghodsi, F.E.; Ozer, N.; Tepehan, G.G. Optical properties of sol–gel dip-coated Ta2O5 films for electrochromic applications. Sol. Energy Mater. Sol. Cells 1999, 59, 265–275. [Google Scholar] [CrossRef]
- Ding, F. Electrochromic Properties of ZnO Thin Films Prepared by Pulsed Laser Deposition. Electrochem. Solid-State Lett. 1999, 2, 418. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Elezzabi, A.Y. Transparent Zinc-Mesh Electrodes for Solar-Charging Electrochromic Windows. Adv. Mater. 2020, 32, 2003574. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; McRae, L.; Firby, C.J.; Elezzabi, A.Y. Rechargeable Aqueous Electrochromic Batteries Utilizing Ti-Substituted Tungsten Molybdenum Oxide Based Zn2+ Ion Intercalation Cathodes. Adv. Mater. 2019, 31, 1807065. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.H.; Tu, J.P.; Zhang, J.; Wang, X.L.; Zhang, W.K.; Huang, H. Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. Sol. Energy Mater. Sol. Cells 2008, 92, 628–633. [Google Scholar] [CrossRef]
- Sawaby, A.; Selim, M.S.; Marzouk, S.Y.; Mostafa, M.A.; Hosny, A. Structure, optical and electrochromic properties of NiO thin films. Phys. B Condens. Matter 2010, 405, 3412–3420. [Google Scholar] [CrossRef]
- Yamanaka, K. Anodically Electrodeposited Iridium Oxide Films (AEIROF) from Alkaline Solutions for Electrochromic Display Devices. Jpn. J. Appl. Phys. 1989, 28, 632–637. [Google Scholar] [CrossRef]
- Jung, Y.; Lee, J.; Tak, Y. Electrochromic Mechanism of IrO2 Prepared by Pulsed Anodic Electrodeposition. Electrochem. Solid-State Lett. 2004, 7, H5. [Google Scholar] [CrossRef]
- Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T. Electrochromic Films Composed of MnO2 Nanosheets with Controlled Optical Density and High Coloration Efficiency. J. Electrochem. Soc. 2005, 152, E384. [Google Scholar] [CrossRef]
- Dhas, C.R.; Venkatesh, R.; Sivakumar, R.; Raj, A.M.E.; Sanjeeviraja, C. Effect of solution molarity on optical dispersion energy parameters and electrochromic performance of Co3O4 films. Opt. Mater. 2017, 72, 717–729. [Google Scholar] [CrossRef]
- Xia, X.H.; Tu, J.P.; Zhang, J.; Xiang, J.Y.; Wang, X.L.; Zhao, X.B. Fast electrochromic properties of self-supported Co3O4 nanowire array film. Sol. Energy Mater. Sol. Cells 2010, 94, 386–389. [Google Scholar] [CrossRef]
- Hsiao, Y.-S.; Chang-Jian, C.-W.; Syu, W.-L.; Yen, S.-C.; Huang, J.-H.; Weng, H.-C.; Lu, C.-Z.; Hsu, S.-C. Enhanced electrochromic performance of carbon-coated V2O5 derived from a metal–organic framework. Appl. Surf. Sci. 2021, 542, 148498. [Google Scholar] [CrossRef]
- Lee, J. Epitaxial Growth of Cu2O (111) by Electrodeposition. Electrochem. Solid-State Lett. 1999, 2, 559. [Google Scholar] [CrossRef]
- Aziz, I.; Suprihatin, H. Structural and optical properties of Cu2O thin film deposited on glass substrates using DC sputtering. AIP Conf. Proc. 2021, 2381, 020022. [Google Scholar] [CrossRef]
- Liu, H.; Liang, X.; Jiang, T.; Zhang, Y.; Liu, S.; Wang, X.; Fan, X.; Huai, X.; Fu, Y.; Geng, Z.; et al. Analysis of structural morphological changes from 3DOM V2O5 film to V2O5 nanorods film and its application in electrochromic device. Sol. Energy Mater. Sol. Cells 2022, 238, 111627. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Kim, K.-H.; Ahn, H.-J. Vacancy-engineered V2O5-x films for ultrastable electrochromic applications. Ceram. Int. 2022, 48, 9400–9406. [Google Scholar] [CrossRef]
- Song, J.; Huang, B.; Liu, S.; Kang, L.; Zhang, Z.; Shang, G.; Yang, Y.; Li, X.; Wang, D.J.S.E. Facile preparation of Prussian blue electrochromic films for smart-supercapattery via an in-situ replacement reaction. Sol. Energy 2022, 232, 275–282. [Google Scholar] [CrossRef]
- Lu, H.-C.; Hsiao, L.-Y.; Kao, S.-Y.; Seino, Y.; Santra, D.C.; Ho, K.-C.; Higuchi, M. Durable Electrochromic Devices Driven at 0.8 V by Complementary Chromic Combination of Metallo-Supramolecular Polymer and Prussian Blue Analogues for Smart Windows with Low-Energy Consumption. ACS Appl. Electron. Mater. 2021, 3, 2123–2135. [Google Scholar] [CrossRef]
- Buser, H.J.; Schwarzenbach, D.; Petter, W.; Ludi, A. The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O. Inorg. Chem. 1977, 16, 2704–2710. [Google Scholar] [CrossRef]
- Kim, K.-W.; Lee, J.K.; Tang, X.; Lee, Y.; Yeo, J.; Moon, H.C.; Lee, S.W.; Kim, S.H. Novel triphenylamine containing poly-viologen for voltage-tunable multi-color electrochromic device. Dye. Pigment. 2021, 190, 109321. [Google Scholar] [CrossRef]
- Pande, G.K.; Heo, J.S.; Choi, J.H.; Eom, Y.S.; Kim, J.; Park, S.K.; Park, J.S. RGB-to-black multicolor electrochromic devices enabled with viologen functionalized polyhedral oligomeric silsesquioxanes. Chem. Eng. J. 2021, 420, 130446. [Google Scholar] [CrossRef]
- Huang, Z.-J.; Li, F.; Xie, J.-P.; Mou, H.-R.; Gong, C.-B.; Tang, Q. Electrochromic materials based on tetra-substituted viologen analogues with broad absorption and good cycling stability. Sol. Energy Mater. Sol. Cells 2021, 223, 110968. [Google Scholar] [CrossRef]
- Choi, J.H.; Balamurugan, G.; Pande, G.K.; Eom, Y.S.; Kim, H.-K.; Cha, D.E.; Park, J.S. Fully spray-coated electrochromic devices containing octa-viologen substituted polyhedral oligomeric silsesquioxane. Thin Solid Film. 2022, 743, 139067. [Google Scholar] [CrossRef]
- Leznoff, C.; Lever, A. Properties and Applications; VCH: New York, NY, USA, 1989; Volume 1996. [Google Scholar]
- Nicholson, M.; Pizzarello, F. Cathodic electrochromism of lutetium diphthalocyanine films. J. Electrochem. Soc. 1981, 128, 1740. [Google Scholar] [CrossRef]
- Li, H.; Guarr, T.F. Reversible electrochromism in polymeric metal phthalocyanine thin films. J. Electroanal. Chem. Interfacial Electrochem. 1991, 297, 169–183. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, R.; Wang, S.; Chen, Q.; Gu, C.; Zhang, W.; Yang, G.; Chen, Q.; Zhang, Y.-M.; Zhang, S.X.-A. A see-through electrochromic display via dynamic metal-ligand interactions. Chem 2021, 7, 1308–1320. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, R.; Wang, S.; Zhang, Y.M.; Zhang, S.X.A. Dynamic Metal—Ligand Interaction of Synergistic Polymers for Bistable See—Through Electrochromic Devices. Adv. Mater. 2021, 34, 2104413. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.; Schiffrin, D. The properties of electrochromic film electrodes of lanthanide diphthalocyanines in ethylene glycol. J. Electrochem. Soc. 1985, 132, 1835. [Google Scholar] [CrossRef]
- Collins, G.; Schiffrin, D. The electrochromic properties of lutetium and other phthalocyanines. J. Electroanal. Chem. Interfacial Electrochem. 1982, 139, 335–369. [Google Scholar] [CrossRef]
- Havinga, E.; Ten Hoeve, W.; Wynberg, H. Alternate donor-acceptor small-band-gap semiconducting polymers; Polysquaraines and polycroconaines. Synth. Met. 1993, 55, 299–306. [Google Scholar] [CrossRef]
- Sapp, S.A.; Sotzing, G.A.; Reynolds, J.R. High contrast ratio and fast-switching dual polymer electrochromic devices. Chem. Mater. 1998, 10, 2101–2108. [Google Scholar] [CrossRef]
- Beaujuge, P.M.; Reynolds, J.R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268–320. [Google Scholar] [CrossRef]
- Neo, W.T.; Loo, L.M.; Song, J.; Wang, X.; Cho, C.M.; On Chan, H.S.; Zong, Y.; Xu, J. Solution-processable blue-to-transmissive electrochromic benzotriazole-containing conjugated polymers. Polym. Chem. 2013, 4, 4663–4675. [Google Scholar] [CrossRef]
- Dubal, D.P.; Chodankar, N.R.; Kim, D.-H.; Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 2018, 47, 2065–2129. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Ganeshan, S.K.; Pal, S.; Chakraborty, C. Targeted enhancement of electrochromic memory in Fe(II) based metallo-supramolecular polymer using molybdenum disulfide quantum dots. Sol. Energy Mater. Sol. Cells 2022, 236, 111487. [Google Scholar] [CrossRef]
- Authidevi, P.; Kavitha, G.; Kanagavel, D.; Vedhi, C. Studies of electrochromic behavior of conducting copolymer of 3-methylthiophene with 3,4-ethylenedioxythiophene. Mater. Today Proc. 2022, 48, 253–257. [Google Scholar] [CrossRef]
- Ding, Z.; Chen, H.; Han, Y.; Liu, J. Molecular engineering of π-extended viologens consisting of quinoxaline-based bridges for tunable electrochromic devices. J. Mol. Struct. 2022, 1262, 133073. [Google Scholar] [CrossRef]
- Guven, N.; Yucel, B.; Sultanova, H.; Camurlu, P. Multichromic metallopolymers of poly(2,5-dithienylpyrrole)s derived through tethering of ruthenium(II) bipiridyl complex. Electrochim. Acta 2022, 424, 140562. [Google Scholar] [CrossRef]
- Goodman, L.A. Passive Liquid Displays: Liquid Crystals, Electrophoretics, and Electrochromics. IEEE Trans. Consum. Electron. 1975, CE-21, 247–259. [Google Scholar] [CrossRef]
- Nundy, S.; Mesloub, A.; Alsolami, B.M.; Ghosh, A. Electrically actuated visible and near-infrared regulating switchable smart window for energy positive building: A review. J. Clean. Prod. 2021, 301, 126854. [Google Scholar] [CrossRef]
- Hakemi, H. Polymer Dispersed Liquid Crystal (PDLC) “Industrial Technology and Devlopment in Europe”. Mol. Cryst. Liq. Cryst. 2019, 684, 7–14. [Google Scholar] [CrossRef]
- Ghosh, A.; Mallick, T.K. Evaluation of optical properties and protection factors of a PDLC switchable glazing for low energy building integration. Sol. Energy Mater. Sol. Cells 2018, 176, 391–396. [Google Scholar] [CrossRef]
- Hale, J.S.; Woollam, J.A. Prospects for IR emissivity control using electrochromic structures1Presentented at the ICMCTF ’97 Conference, San Diego, CA, USA, April 1997.1. Thin Solid Film. 1999, 339, 174–180. [Google Scholar] [CrossRef]
- Torres, J.C.; Vergaz, R.; Barrios, D.; Sánchez-Pena, J.M.; Viñuales, A.; Grande, H.J.; Cabañero, G. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices. Materials 2014, 7, 3512–3521. [Google Scholar] [CrossRef] [Green Version]
- Anjaneyulu, Y.; Yoon, D.W. A PCGH liquid crystal window to control solar energy. Sol. Energy Mater. 1986, 14, 223–232. [Google Scholar] [CrossRef]
- Li, K.; Pivnenko, M.; Chu, D.; Cockburn, A.; O’Neill, W. Uniform and fast switching of window-size smectic A liquid crystal panels utilising the field gradient generated at the fringes of patterned electrodes. Liq. Cryst. 2016, 43, 735–749. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, D.J.; Morris, S.M.; Coles, H.J. High-efficiency multistable switchable glazing using smectic A liquid crystals. Sol. Energy Mater. Sol. Cells 2009, 93, 301–306. [Google Scholar] [CrossRef]
- Thakur, V.K.; Ding, G.; Ma, J.; Lee, P.S.; Lu, X. Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications. Adv. Mater. 2012, 24, 4071–4096. [Google Scholar] [CrossRef]
- Hemaida, A.; Ghosh, A.; Sundaram, S.; Mallick, T.K. Evaluation of thermal performance for a smart switchable adaptive polymer dispersed liquid crystal (PDLC) glazing. Sol. Energy 2020, 195, 185–193. [Google Scholar] [CrossRef]
- Tao, X.; Liu, D.; Yu, J.; Cheng, H. Reversible Metal Electrodeposition Devices: An Emerging Approach to Effective Light Modulation and Thermal Management. Adv. Opt. Mater. 2021, 9, 2001847. [Google Scholar] [CrossRef]
- Araki, S.; Nakamura, K.; Kobayashi, K.; Tsuboi, A.; Kobayashi, N. Electrochemical Optical-Modulation Device with Reversible Transformation Between Transparent, Mirror, and Black. Adv. Mater. 2012, 24, OP122–OP126. [Google Scholar] [CrossRef]
- Eh, A.L.-S.; Chen, J.; Zhou, X.; Ciou, J.-H.; Lee, P.S. Robust Trioptical-State Electrochromic Energy Storage Device Enabled by Reversible Metal Electrodeposition. ACS Energy Lett. 2021, 6, 4328–4335. [Google Scholar] [CrossRef]
- Nakashima, M.; Ebine, T.; Shishikura, M.; Hoshino, K.; Kawai, K.; Hatsusaka, K. Bismuth Electrochromic Device with High Paper-Like Quality and High Performances. ACS Appl. Mater. Interfaces 2010, 2, 1471–1482. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Juarez-Rolon, J.S.; Islam, S.M.; Barile, C.J. Electrolyte Effects in Reversible Metal Electrodeposition for Optically Switching Thin Films. J. Electrochem. Soc. 2019, 166, D496–D504. [Google Scholar] [CrossRef]
- Hirata, S.; Tsuji, T.; Kato, Y.; Adachi, C. Reversible Coloration Enhanced by Electrochemical Deposition of an Ultrathin Zinc Layer onto an Anodic Nanoporous Alumina Layer. Adv. Funct. Mater. 2012, 22, 4195–4201. [Google Scholar] [CrossRef]
- Barile, C.J.; Slotcavage, D.J.; Hou, J.; Strand, M.T.; Hernandez, T.S.; McGehee, M.D. Dynamic Windows with Neutral Color, High Contrast, and Excellent Durability Using Reversible Metal Electrodeposition. Joule 2017, 1, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.M.; Barile, C.J. interfaces. Dual Tinting Dynamic Windows Using Reversible Metal Electrodeposition and Prussian Blue. ACS Appl. Mater. 2019, 11, 40043–40049. [Google Scholar] [CrossRef]
- Park, C.; Seo, S.; Shin, H.; Sarwade, B.D.; Na, J.; Kim, E. Switchable silver mirrors with long memory effects. Chem. Sci. 2015, 6, 596–602. [Google Scholar] [CrossRef] [Green Version]
- Tsuboi, A.; Nakamura, K.; Kobayashi, N. A localized surface plasmon resonance—based multicolor electrochromic device with electrochemically Size—Controlled silver nanoparticles. Adv. Mater. 2013, 25, 3197–3201. [Google Scholar] [CrossRef]
- Mortimer, R.J.; Reynolds, J.R. In situ colorimetric and composite coloration efficiency measurements for electrochromic Prussian blue. J. Mater. Chem. 2005, 15, 2226–2233. [Google Scholar]
- Gaupp, C.L.; Welsh, D.M.; Rauh, R.D.; Reynolds, J.R. Composite Coloration Efficiency Measurements of Electrochromic Polymers Based on 3,4-Alkylenedioxythiophenes. Chem. Mater. 2002, 14, 3964–3970. [Google Scholar] [CrossRef]
- Ashok Reddy, G.V.; Shaik, H.; Kumar, K.N.; Shetty, H.D.; Jafri, R.I.; Naik, R.; Gupta, J.; Sattar, S.A.; Doreswamy, B.H. Synthesis, characterizations, and electrochromic studies of WO3 coated CeO2 nanorod thin films for smart window applications. Phys. B Condens. Matter 2022, 647, 414395. [Google Scholar] [CrossRef]
- Ye, Q.; Neo, W.T.; Cho, C.M.; Yang, S.W.; Lin, T.; Zhou, H.; Yan, H.; Lu, X.; Chi, C.; Xu, J. Synthesis of ultrahighly electron-deficient pyrrolo[3,4-d]pyridazine-5,7-dione by inverse electron demand Diels-Alder reaction and its application as electrochromic materials. Org. Lett. 2014, 16, 6386–6389. [Google Scholar] [CrossRef]
- He, B.; Neo, W.T.; Chen, T.L.; Klivansky, L.M.; Wang, H.; Tan, T.; Teat, S.J.; Xu, J.; Liu, Y. Low Bandgap Conjugated Polymers Based on a Nature-Inspired Bay-Annulated Indigo (BAI) Acceptor as Stable Electrochromic Materials. ACS Sustain. Chem. Eng. 2016, 4, 2797–2805. [Google Scholar] [CrossRef]
- Neo, W.T.; Ong, K.H.; Lin, T.T.; Chua, S.-J.; Xu, J. Effects of fluorination on the electrochromic performance of benzothiadiazole-based donor–acceptor copolymers. J. Mater. Chem. C 2015, 3, 5589–5597. [Google Scholar] [CrossRef]
- Mondal, S.; Yoshida, T.; Rana, U.; Bera, M.K.; Higuchi, M. Thermally stable electrochromic devices using Fe(II)-based metallo-supramolecular polymer. Sol. Energy Mater. Sol. Cells 2019, 200, 110000. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Sheng, M.; Chen, Y.; Li, B.; Wu, Q.; Fu, S.; Zhang, L. Novel Bistable Electrochromic Devices Inspired by “Hydroxyl-Acids”. Adv. Electron. Mater. 2022, 8, 2200201. [Google Scholar] [CrossRef]
- Fu, H.; Yan, S.; Yang, T.; Yin, M.; Zhang, L.; Shao, X.; Dong, Y.; Li, W.; Zhang, C. New dual conjugated polymer electrochromic device with remarkable yellow-to-green switch for adaptive camouflage. Chem. Eng. J. 2022, 438, 135455. [Google Scholar] [CrossRef]
- Feng, T.; Guo, H.; Zhang, B.; Qu, X.; Bai, Y.; Dang, D.; Zhao, W. Conducting Polyaniline/Au Nanorods Composite Film for High-Performance Electrochromic Device. J. Electrochem. Soc. 2022, 169, 036501. [Google Scholar] [CrossRef]
- Xie, X.; Yu, J.; Li, Z.; Wu, Z.; Chen, S. Self-healable PEDOT-based all-organic films with excellent electrochromic performances. New J. Chem. 2022, 46, 21167–21175. [Google Scholar] [CrossRef]
- Wu, C.; Shao, Z.; Zhai, W.; Zhang, X.; Zhang, C.; Zhu, C.; Yu, Y.; Liu, W. Niobium Tungsten Oxides for Electrochromic Devices with Long-Term Stability. ACS Nano 2022, 16, 2621–2628. [Google Scholar] [CrossRef]
- Guo, J.; Diao, X.; Wang, M.; Zhang, Z.-B.; Xie, Y. Self-Driven Electrochromic Window System Cu/WOx-Al3+/GR with Dynamic Optical Modulation and Static Graph Display Functions. ACS Appl. Mater. Interfaces 2022, 14, 10517–10525. [Google Scholar] [CrossRef]
- Kumar, A.; Jamdegni, M.; Kaur, A. Study of electrochromic behavior of the supporting electrolyte free electrochromic devices based on the graphene quantum dots functionalized viologens for energy-saving smart window application. Synth. Met. 2022, 287, 117084. [Google Scholar] [CrossRef]
- He, Q.; Liu, J.-n.; Pan, M.-y.; Du, K.; Tang, Q.; Gong, C.-B.; Shen, W. Ester decorated 1,2,4,5-tetraphenylbenzene electrochromic materials with AEE activity, high optical contrast, fast response, and good cycling stability. Dye. Pigment. 2022, 205, 110553. [Google Scholar] [CrossRef]
- Ming, S.; Zhang, Y.; Lin, K.; Du, Y.; Zhao, J.; Zhang, Y. Maroon-green-indigo color switching of thienoisoindigo-based electrochromic copolymers with high optical contrast. J. Taiwan Inst. Chem. Eng. 2022, 138, 104442. [Google Scholar] [CrossRef]
- Chen, H.; Wang, W.; Zhu, J.; Han, Y.; Liu, J. Electropolymerization of D-A type EDOT-based monomers consisting of camphor substituted quinoxaline unit for electrochromism with enhanced performance. Polymer 2022, 240, 124485. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Y.; Jian, Z.; Qi, Y.; Xiong, Y.; Chen, W. Novel High-Performance and Low-Cost Electrochromic Prussian White Film. ACS Appl. Mater. Interfaces 2022, 14, 8157–8162. [Google Scholar] [CrossRef]
- Ahmad, K.; Song, G.; Kim, H. Fabrication of Tungsten Oxide/Graphene Quantum Dot (WO3@GQD) Thin Films on Indium Tin Oxide-Based Glass and Flexible Substrates for the Construction of Electrochromic Devices for Smart Window Applications. ACS Sustain. Chem. Eng. 2022, 10, 11948–11957. [Google Scholar] [CrossRef]
- Jiaqiang, Z.; Xinlei, Z.; Nengze, W.; Chunyang, J. Zn-Fe PBA Films by Two-step Electrodeposition Method: Preparation and Performance in Electrochromic Devices. J. Inorg. Mater. 2022, 37, 961–968. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, Z.; Zeng, Y.; Zhao, H.; Yang, J. High-Properties electrochromic device based on TiO2@Graphene/Prussian blue Core-Shell nanostructures. Chem. Eng. J. 2022, 431, 134066. [Google Scholar] [CrossRef]
- Lv, X.; Li, J.; Zhang, L.; Ouyang, M.; Tameev, A.; Nekrasov, A.; Kim, G.; Zhang, C. High-performance electrochromic supercapacitor based on quinacridone dye with good specific capacitance, fast switching time and robust stability. Chem. Eng. J. 2022, 431, 133733. [Google Scholar] [CrossRef]
- Pham, N.S.; Phan, P.T.Q.; Nguyen, B.N.; Le, V.X.; Nguyen, A.Q.K. Constant current versus constant voltage electrodepostion: Fabrication of long-term stable Prussian blue films toward bifunctional electrochromic pseudocapacitors. J. Appl. Electrochem. 2022. [Google Scholar] [CrossRef]
- Kong, S.; Zhang, G.; Li, M.; Yao, R.; Guo, C.; Ning, H.; Zhang, J.; Tao, R.; Yan, H.; Lu, X. Investigation of an Electrochromic Device Based on Ammonium Metatungstate-Iron (II) Chloride Electrochromic Liquid. Micromachines 2022, 13, 1345. [Google Scholar] [CrossRef]
- Chu, D.; Qu, X.; Zhang, S.; Zhang, J.; Liu, Z.; Zhou, L.; Yang, Y. Copper complex/polyoxometalate-based tunable multi-color film for energy storage. Asia-Pac. J. Chem. Eng. 2022, 17, e2779. [Google Scholar] [CrossRef]
- Sharma, R.; Nihal; Sharma, M.; Goswamy, J.K. Synthesis and characterization of MoS2/WO3 nanocomposite for electrochromic device application. Int. J. Energy Res. 2022. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, B.; Qu, X.; Zhang, J.; Song, Y.; Yu, X.; Lv, Y. Enhanced dual-band modulation of visible and near-infrared light transmittance in electrochromic composite films based on Preyssler-type polyoxometalates and W18O49. New J. Chem. 2022, 46, 12394–12400. [Google Scholar] [CrossRef]
- Kim, C.; Lokhande, V.; Youn, D.; Ji, T. Electrochromism in Hf-doped WO3. J. Solid State Electrochem. 2022, 26, 1557–1566. [Google Scholar] [CrossRef]
- Ko, T.-F.; Chen, P.-W.; Li, K.-M.; Young, H.-T. Applied IrO2 Buffer Layer as a Great Promoter on Ti-Doping V2O5 Electrode to Enhance Electrochromic Device Properties. Materials 2022, 15, 5179. [Google Scholar] [CrossRef]
- Klein, J.; Alarslan, F.; Steinhart, M.; Haase, M. Cerium-Modified Mesoporous Antimony Doped Tin Oxide as Intercalation-Free Charge Storage Layers for Electrochromic Devices. Adv. Funct. Mater. 2022, 2210167. [Google Scholar] [CrossRef]
- Wang, H.; Barrett, M.; Duane, B.; Gu, J.; Zenhausern, F. Materials and processing of polymer-based electrochromic devices. Mater. Sci. Eng. B 2018, 228, 167–174. [Google Scholar] [CrossRef]
- Beke, S. A review of the growth of V2O5 films from 1885 to 2010. Thin Solid Film. 2011, 519, 1761–1771. [Google Scholar] [CrossRef]
- Mehmood, A.; Long, X.; Haidry, A.A.; Zhang, X. Trends in sputter deposited tungsten oxide structures for electrochromic applications: A review. Ceram. Int. 2020, 46, 23295–23313. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Liang, X.; Ya, J.; Cui, T.; Liu, Z. Synthesis and electrochromic properties of PEG doped WO3 film. Mater. Technol. 2014, 29, 341–349. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, X.; Cao, H. Influence of PEG additive and annealing temperature on structural and electrochromic properties of sol–gel derived WO3 films. J. Sol-Gel Sci. Technol. 2011, 59, 145–152. [Google Scholar] [CrossRef]
- He, D.; Su, C.; Zhao, C.; Yan, G.; Zhao, Z.; Mai, W. Multicolor electrochromic device based on reversible metal electrodeposition of Bi-Cu with controlled morphology and composition ratio. Chem. Eng. J. 2022, 438, 135469. [Google Scholar] [CrossRef]
- Strand, M.T.; Hernandez, T.S.; Danner, M.G.; Yeang, A.L.; Jarvey, N.; Barile, C.J.; McGehee, M.D. Polymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulation. Nat. Energy 2021, 6, 546–554. [Google Scholar] [CrossRef]
- Park, C.; Na, J.; Han, M.; Kim, E. Transparent electrochemical gratings from a patterned bistable silver mirror. ACS Nano 2017, 11, 6977–6984. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Ivanov, M.; Cerneavschi, A.; Rodriguez, J.; Cirera, A.; Cornet, A.; Morante, J. Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Film. 2005, 479, 38–51. [Google Scholar] [CrossRef]
- Au, B.W.-C.; Tamang, A.; Knipp, D.; Chan, K.-Y. Post-annealing effect on the electrochromic properties of WO3 films. Opt. Mater. 2020, 108, 110426. [Google Scholar]
- Mallik, A.; Ray, B.C. Evolution of Principle and Practice of Electrodeposited Thin Film: A Review on Effect of Temperature and Sonication. Int. J. Electrochem. 2011, 2011, 568023. [Google Scholar] [CrossRef] [Green Version]
- Alcaraz, G.K.A.; Juarez-Rolon, J.S.; Burpee, N.A.; Barile, C.J. Thermally-stable dynamic windows based on reversible metal electrodeposition from aqueous electrolytes. J. Mater. Chem. C 2018, 6, 2132–2138. [Google Scholar] [CrossRef]
- Aerts, T.; Jorcin, J.-B.; De Graeve, I.; Terryn, H. Comparison between the influence of applied electrode and electrolyte temperatures on porous anodizing of aluminium. Electrochim. Acta 2010, 55, 3957–3965. [Google Scholar] [CrossRef]
- El Abedin, S.Z.; Saad, A.; Farag, H.; Borisenko, N.; Liu, Q.; Endres, F. Electrodeposition of selenium, indium and copper in an air-and water-stable ionic liquid at variable temperatures. Electrochim. Acta 2007, 52, 2746–2754. [Google Scholar] [CrossRef]
- Dulal, S.; Yun, H.J.; Shin, C.B.; Kim, C.-K. Electrodeposition of CoWP film: III. Effect of pH and temperature. Electrochim. Acta 2007, 53, 934–943. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Tang, Y.; Jia, Z. Low temperature cathodic electrodeposition of nanocrystalline zinc oxide thin films. Thin Solid Film. 2005, 492, 24–29. [Google Scholar] [CrossRef]
- Radovici, O.; Vass, C.; Solacolu, I. Some aspects of copper electrodeposition from pyrophosphate electrolytes. Electrodeposition 1974, 2, 263–273. [Google Scholar] [CrossRef]
- Elsentriecy, H.H.; Azumi, K.; Konno, H. Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91 D magnesium alloy. Electrochim. Acta 2008, 53, 4267–4275. [Google Scholar] [CrossRef]
- Thummavichai, K.; Wang, N.; Xu, F.; Rance, G.; Xia, Y.; Zhu, Y. In situ investigations of the phase change behaviour of tungsten oxide nanostructures. R. Soc. Open Sci. 2018, 5, 171932. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Ou, J.Z.; Strano, M.S.; Kaner, R.B.; Mitchell, A.; Kalantar-zadeh, K. Nanostructured Tungsten Oxide—Properties, Synthesis, and Applications. Adv. Funct. Mater. 2011, 21, 2175–2196. [Google Scholar] [CrossRef]
- Woodward, P.; Sleight, A.; Vogt, T. Ferroelectric tungsten trioxide. J. Solid State Chem. 1997, 131, 9–17. [Google Scholar] [CrossRef]
- Anderson, O.; Stuart, D. Calculation of activation energy of ionic conductivity in silica glasses by classical methods. J. Am. Ceram. Soc. 1954, 37, 573–580. [Google Scholar] [CrossRef]
- Raja, M.; Chandrasekaran, J.; Balaji, M. Evaluation of microstructural and electrical properties of WO3-x thin films for p-Si/n-WO3-x/Ag junction diodes. Optik 2016, 127, 11009–11019. [Google Scholar] [CrossRef]
- Nazmutdinov, R.R.; Dudkina, Y.B.; Zinkicheva, T.T.; Budnikova, Y.H.; Probst, M. Ligand and solvent effects on the kinetics of the electrochemical reduction of Ni(II) complexes: Experiment and quantum chemical modeling. Electrochim. Acta 2021, 395, 139138. [Google Scholar] [CrossRef]
- Moorcroft, M.J.; Lawrence, N.S.; Coles, B.A.; Compton, R.G.; Trevani, L.N. High temperature electrochemical studies using a channel flow cell heated by radio frequency radiation. J. Electroanal. Chem. 2001, 506, 28–33. [Google Scholar] [CrossRef]
- Bell, J.M.; Matthews, J.P.; Skryabin, I.L. Modelling switching of electrochromic devices—A route to successful large area device design. Solid State Ion. 2002, 152–153, 853–860. [Google Scholar] [CrossRef]
- Adams, R.A.; Varma, A.; Pol, V.G. Temperature dependent electrochemical performance of graphite anodes for K-ion and Li-ion batteries. J. Power Sources 2019, 410–411, 124–131. [Google Scholar] [CrossRef]
- Papac, M.C.; Talley, K.R.; O’Hayre, R.; Zakutayev, A. Instrument for spatially resolved, temperature-dependent electrochemical impedance spectroscopy of thin films under locally controlled atmosphere. Rev. Sci. Instrum. 2021, 92, 065105. [Google Scholar] [CrossRef]
- Sbar, N.L.; Podbelski, L.; Yang, H.M.; Pease, B. Electrochromic dynamic windows for office buildings. Int. J. Sustain. Built Environ. 2012, 1, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Chow, T.T. A review on photovoltaic/thermal hybrid solar technology. Appl. Energy 2010, 87, 365–379. [Google Scholar] [CrossRef]
- Piccolo, A. Thermal performance of an electrochromic smart window tested in an environmental test cell. Energy Build. 2010, 42, 1409–1417. [Google Scholar] [CrossRef]
- Casini, M. Active dynamic windows for buildings: A review. Renew. Energy 2018, 119, 923–934. [Google Scholar] [CrossRef]
- Islam, S.M.; Hernandez, T.S.; McGehee, M.D.; Barile, C.J. Hybrid dynamic windows using reversible metal electrodeposition and ion insertion. Nat. Energy 2019, 4, 223–229. [Google Scholar] [CrossRef]
- Selkowitz, S. Reflections on surface morphology. Nat. Energy 2021, 6, 456–457. [Google Scholar] [CrossRef]
Materials | Colour in Oxidized from | Colour in Reduced from | Type of Colouring |
---|---|---|---|
WO3 [19,20,21] | Pale yellow | Dark blue | Cathodic |
TiO2 [22,23,24] | Colourless | Blue | Cathodic |
Nb2O5 [25,26] | Colourless | Brown–black | Cathodic |
MoO3 [27,28] | Colourless | Dark blue | Cathodic |
Ta2O5 [29,30] | Colourless | Black | Cathodic |
ZnO [31,32,33] | Colourless | Blue | Cathodic |
NiO [34,35] | Brown/black | Colourless | Anodic |
IrO2 [36,37] | Blue–black | Colourless | Anodic |
MnO2 [38] | Dark brown | Pale yellow | Anodic |
Co3O4 [39,40,41] | Blue | Brown | Anodic |
Cu2O [42,43] | Black | Metallic reddish–brown | Anodic |
V2O5 [44,45] | Brownish–yellow | Pale blue | Cathodic & Anodic |
Electrochromic Material | Switching Time | Colouration Efficiency (cm2 C−1) | Optical Modulation | Cycling Stability (Cycles) | Memory Effect |
---|---|---|---|---|---|
80% hydroxypropyl acrylate—20% methyl methacrylate copolymer [97] | 7.5 s | 872 | >70% | 1000 | 50 h |
Electrochromic conjugated polymers [98] | ≤2 s | --- | 60.6% | 12,000 | --- |
PANI/Au nanorods [99] | 0.9 s | --- | 56% | 6750 | --- |
thermally self–healable polyurethane [100] | 0.8 s | 324.9 | 93% | 100 | --- |
Nb18W16O93 [101] | 4.7 s | 46.57 | 53.1% | 8000 | --- |
Cu/WOx–Al3+/GR [102] | 140 s | 36.0 | 41% | 2000 | --- |
di–heptyl viologen with graphene quantum dots [103] | 6.2 s | 66 | 60% | --- | |
di–pentyl viologen with graphene quantum dots [103] | 4.4 s | 143.9 | 53.4% | 3000 | --- |
1,2,4,5–tetrakis (4–carboxyphenyl) benzene esters [104] | <3 s | 261.0 | 64.5% | 2350 | --- |
thienoisoindigo–based electrochromic copolymers [105] | 0.35 s | 433.4 | 82% | --- | --- |
Fe(II) based metallo–supramolecular polymer [77] | 0.78 s | 242.2 | 90% | >100 | 32 min |
D–A type EDOT–based monomers consisting [106] | 0.5 s | 427 | > 50% | --- | --- |
Prussian White [107] | 2.5 s | 149.3 | >70% | 10,000 | --- |
Tungsten Oxide/Graphene Quantum Dot [108] | 4.1 s | 78 | 78.72% | 10,000 | --- |
p–extended viologens consisting of quinoxaline–based bridges [79] | 0.46 s | 334 | 82% | --- | --- |
Zn–Fe Prussian blue [109] | 3.9 s | --- | 60% | 10,000 | 40 min |
TiO2@Graphene/Prussian blue Core–Shell [110] | 1 s | 129.1 | 56.1% | 1000 | 8.3 h |
quinacridone dye [111] | <1 s | 498 | 40% | 50,000 | --- |
Prussian blue [112] | 2.3 s | 67.23 | 60% | 10,000 | --- |
ammonium metatungstate and iron (II) chloride solution [113] | <10 s | 160.04 | 57% | 100 | --- |
NW/P2W17/Cu (phen)2 [114] | 2.9 s | 50.4 | 43.7% | --- | --- |
MoS2/WO3 nanocomposite [115] | 20 s | 67 | 59% | 100 | --- |
Preyssler–type polyoxometalates and W18O49 [116] | 2.62 s | 149.78 | 50% | 500 | --- |
3–methylthiophene with 3,4–ethylenedioxythiophene [78] | 6 s | 685 | 84% | --- | --- |
Hf–doped WO3 [117] | 1.28 s | 161.87 | 75% | 1000 | --- |
Ti–Doping V2O5 [118] | 1.4 s | 96.1 | 57% | 1000 | --- |
reversible metal electrodeposition of Bi–Cu | 3.1 s | 10.98 | 80% | 2500 | --- |
antimony–doped tin oxide [119] | 0.4 s | 27 | 90% | 1000 | --- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, M.; Yin, H.; Liu, Y.; Wang, X.; Yuan, L.; Duan, Y. Synergistic Electric and Thermal Effects of Electrochromic Devices. Micromachines 2022, 13, 2187. https://doi.org/10.3390/mi13122187
Yuan M, Yin H, Liu Y, Wang X, Yuan L, Duan Y. Synergistic Electric and Thermal Effects of Electrochromic Devices. Micromachines. 2022; 13(12):2187. https://doi.org/10.3390/mi13122187
Chicago/Turabian StyleYuan, Meng, Hanlin Yin, Yitong Liu, Xiaohua Wang, Long Yuan, and Yu Duan. 2022. "Synergistic Electric and Thermal Effects of Electrochromic Devices" Micromachines 13, no. 12: 2187. https://doi.org/10.3390/mi13122187
APA StyleYuan, M., Yin, H., Liu, Y., Wang, X., Yuan, L., & Duan, Y. (2022). Synergistic Electric and Thermal Effects of Electrochromic Devices. Micromachines, 13(12), 2187. https://doi.org/10.3390/mi13122187