Design and Preparation of Self-Oscillating Actuators Using Piezoelectric Ceramics with High Coupling Factors and Mechanical Quality Factors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Q.; Lam, K.H.; Zheng, H.; Qiu, W.; Shung, K.K. Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 2014, 66, 87–111. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Wang, L.; Luo, X.; Fei, C.; Li, D.; Shan, G.; Yang, Y. Recent development and perspectives of optimization design methods for piezoelectric ultrasonic transducers. Micromachines 2021, 12, 779. [Google Scholar] [CrossRef]
- Sherrit, S.; Wiederick, H.D.; Mukherjee, B.K.; Sayer, M. An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode. J. Phys. D Appl. Phys. 1997, 30, 2354–2363. [Google Scholar] [CrossRef]
- Han, J.S.; Gal, C.W.; Park, J.M.; Park, S.J. Powder injection molding of PNN-PMN-PZN doped low temperature sintering PZT ceramics. J. Manuf. Process. 2017, 28, 235–242. [Google Scholar] [CrossRef]
- Yang, Z.; Chao, X.; Zhang, R.; Chang, Y.; Chen, Y. Fabrication and electrical characteristics of piezoelectric PMN-PZN-PZT ceramic transformers. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2007, 138, 277–283. [Google Scholar] [CrossRef]
- Joo, H.; Kim, I.; Song, J.; Jeong, S.; Kim, M. Piezoelectric properties of rosen-type piezoelectric transformer using 0.01Pb(Ni1/3Nb2/3)O3-0.08Pb(Mn1/3Nb2/3)O3-0.19Pb(Zr0.505Ti0.495)O3 ceramics. J. Kor. Phys. Soc. 2010, 56, 374–377. [Google Scholar] [CrossRef]
- Yoo, J. High dielectric and piezoelectric properties of low-temperature sintering PNN-PMN-PZT ceramics for low-loss piezoelectric actuator application. Trans. Electr. Electron. Mater. 2018, 19, 249–253. [Google Scholar] [CrossRef]
- Ra, C.M.; Yoo, J.H. Dielectric and piezoelectric properties of PMW-PNN-PZT ceramics as a function of ZnO addition. J. Korean Inst. Electr. Electron. Mater. Eng. 2015, 28, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Li, H.L.; Zhang, Y.; Zhou, J.J.; Zhang, X.W.; Liu, H.; Fang, J.Z. Phase structure and electrical properties of xPZN-(1-x)PZT piezoceramics near the tetragonal/rhombohedral phase boundary. Ceram. Int. 2015, 41, 4822–4828. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Yan, Z.; Wang, A.; Jiang, P.; Zhong, M. Fabrication and performance of PNN-PZT piezoelectric ceramics obtained by low-temperature sintering. Sci. Eng. Compos. Mater. 2020, 27, 359–365. [Google Scholar] [CrossRef]
- Stevenson, T.; Martin, D.G.; Cowin, P.I.; Blumfield, A.; Bell, A.J.; Comyn, T.P.; Weaver, P.M. Piezoelectric materials for high temperature transducers and actuators. J. Mater. Sci. Mater. Electron. 2015, 26, 9256–9267. [Google Scholar] [CrossRef] [Green Version]
- Nie, R.; Zhang, Q.; Yue, Y.; Liu, H.; Chen, Y.; Chen, Q.; Zhu, J.; Yu, P.; Xiao, D. Phase structure-electrical property relationships in Pb(Ni1/3Nb2/3)O3-Pb(Zr,Ti)O3-based ceramics. J. Appl. Phys. 2016, 119, 124111. [Google Scholar] [CrossRef]
- Zheng, M.P.; Hou, Y.D.; Ge, H.Y.; Zhu, M.K.; Yan, H. Effect of NiO additive on microstructure, mechanical behavior and electrical properties of 0.2PZN-0.8PZT ceramics. J. Eur. Ceram. Soc. 2013, 33, 1447–1456. [Google Scholar] [CrossRef]
- Hamzioui, L.; Kahoul, F.; Boutarfaia, A. The effect of Nb2O5 addition on the structural, dielectric and piezoelectric properties of Pb0.98Ba0.02[(Zr0.52Ti0.48)0.98(Cr3+0.5,Ta5+0.5)0.02] ceramics. Energy Proc. 2015, 74, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Fu, J.; Zuo, R. Middle-low temperature sintering and piezoelectric properties of CuO and Bi2O3 doped PMS-PZT based ceramics for ultrasonic motors. Ceram. Int. 2021, 47, 20117–20125. [Google Scholar] [CrossRef]
- Jeong, Y.; Yoo, J.; Lee, S.; Hong, J. Piezoelectric characteristics of low temperature sintering Pb(Mn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr0.50Ti0.50)O3 according to the addition of CuO and Fe2O3. Sens. Actuators A Phys. 2007, 135, 215–219. [Google Scholar] [CrossRef]
- Zheng, M.; Hou, Y.; Zhu, M.; Zhang, M.; Yan, H. Shift of morphotropic phase boundary in high-performance fine-grained PZN-PZT ceramics. J. Eur. Ceram. Soc. 2014, 34, 2275–2283. [Google Scholar] [CrossRef]
- Hamzioui, L.; Kahoul, F.; Boutarfaia, A.; Guemache, A.; Hamzioui, L.; Kahoul, F.; Boutarfaia, A.; Guemache, A.; Aillerie, M.; Hamzioui, L.; et al. Structure, dielectric and piezoelectric properties of Pb [(Zr0.45,Ti0.5)(Mn0.5,Sb0.5)0.05]O3 ceramics. Process. Appl. Ceram. 2021, 14, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Kalem, V.; Timucin, M. Structural, piezoelectric and dielectric properties of PSLZT-PMnN ceramics. J. Eur. Ceram. Soc. 2013, 33, 105–111. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, T.; Lee, E.; Choi, N.G.; Jeong, H.S. Physical properties of PNN-PMN-PZT doped with zinc oxide and CLBO for ultrasonic transducer. Trans. Electr. Electron. Mater. 2017, 18, 334–337. [Google Scholar] [CrossRef]
- Kim, H.T.; Ji, J.H.; Kim, B.S.; Baek, J.S.; Koh, J.H. Engineered hard piezoelectric materials of MnO2 doped PZT-PSN ceramics for sensors applications. J. Asian Ceram. Soc. 2021, 9, 1083–1090. [Google Scholar] [CrossRef]
- Peng, Z.H.; Zheng, D.Y.; Zhou, T.; Yang, L.; Zhang, N.; Fang, C. Effects of Co2O3 doping on electrical properties and dielectric relaxation of PMS–PNN–PZT ceramics. J. Mater. Sci. Mater. Electron. 2018, 29, 5961–5968. [Google Scholar] [CrossRef]
- Dinh Tung Luan, N.; Vuong, L.D.; Van Chuong, T.; Truong Tho, N. Structure and physical properties of PZT-PMnN-PSN ceramics near the morphological phase boundary. Adv. Mater. Sci. Eng. 2014, 2014, 821404. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, I.; Yoon, M.S.; Ur, S.C. Antimony oxide-doped 0.99Pb(Zr0.53Ti0.47)O3-0.01Bi(Y1−xSbx)O3 piezoelectric ceramics for energy-harvesting applications. Appl. Sci. 2017, 7, 960. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Kim, M.; Jeong, S.; Song, J.; Joo, H.; Thang, V.V.; Muller, A. Properties of step-down multilayer piezo stack transformers using PNN-PMN-PZT ceramics with CeO2 addition. J. Kor. Phys. Soc. 2011, 58, 580–584. [Google Scholar] [CrossRef]
- Zhuo, Z.; Ling, Z.; Liu, Y. Phase composition and piezoelectric properties of Pb(Sb1/2Nb1/2)–PbTiO3–PbZrO3 ceramics. J. Mater. Sci. Mater. Electron. 2018, 29, 9524–9530. [Google Scholar] [CrossRef]
- Menasra, H.; Necira, Z.; Bouneb, K.; Maklid, A.; Boutarfaia, A. Microstructure and dielectric properties of Bi substituted PLZMST ceramics. Mater. Sci. Appl. 2013, 4, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Lin, S. Study on the radial vibration of a new type of composite piezoelectric transducer. J. Sound Vib. 2007, 306, 192–202. [Google Scholar] [CrossRef]
- Lin, S.; Hu, J.; Fu, Z. Electromechanical characteristics of piezoelectric ceramic transformers in radial vibration composed of concentric piezoelectric ceramic disk and ring. Smart Mater. Struct. 2013, 22, 045018. [Google Scholar] [CrossRef]
- Meyer, Y.; Lachat, R. Vibration characterization procedure of piezoelectric ceramic parameters—Application to low-cost thin disks made of piezoceramics. MATEC Web Conf. 2015, 20, 01003. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.J.; Oh, S.H.; Kim, J.O. Measurements of radial in-plane vibration characteristics of piezoelectric disk transducers. Trans. Kor. Soc. Noise Vib. Eng. 2015, 25, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-W.; Park, C.-H.; Chong, H.-H.; Jeong, S.-S.; Park, T.-G. Design and fabrication of a thin-type ultrasonic motor. J. Kor. Inst. Electr. Electron. Mater. Eng. 2010, 23, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Qin, L.; Wang, L.K. Non direction high-frequency underwater transducer. Second Int. Conf. Smart Mater. Nanotechnol. Eng. 2009, 7493, 749354. [Google Scholar] [CrossRef]
- Kim, J.O.; Lee, J.G.; Chun, H.Y. Radial vibration characteristics of spherical piezoelectric transducers. Ultrasonics 2005, 43, 531–537. [Google Scholar] [CrossRef]
- Piao, C.; Kim, J.O. Vibration characteristics of an ultrasonic transducer of two piezoelectric discs. Ultrasonics 2017, 74, 72–80. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-W.; Lee, H.-C. Design and Preparation of Self-Oscillating Actuators Using Piezoelectric Ceramics with High Coupling Factors and Mechanical Quality Factors. Micromachines 2022, 13, 158. https://doi.org/10.3390/mi13020158
Kim S-W, Lee H-C. Design and Preparation of Self-Oscillating Actuators Using Piezoelectric Ceramics with High Coupling Factors and Mechanical Quality Factors. Micromachines. 2022; 13(2):158. https://doi.org/10.3390/mi13020158
Chicago/Turabian StyleKim, So-Won, and Hee-Chul Lee. 2022. "Design and Preparation of Self-Oscillating Actuators Using Piezoelectric Ceramics with High Coupling Factors and Mechanical Quality Factors" Micromachines 13, no. 2: 158. https://doi.org/10.3390/mi13020158
APA StyleKim, S. -W., & Lee, H. -C. (2022). Design and Preparation of Self-Oscillating Actuators Using Piezoelectric Ceramics with High Coupling Factors and Mechanical Quality Factors. Micromachines, 13(2), 158. https://doi.org/10.3390/mi13020158