A Portable Waist-Loaded Soft Exosuit for Hip Flexion Assistance with Running
Abstract
:1. Introduction
- (1)
- A portable waist-loaded soft exosuit is proposed to assist hip joint flexion during running, and the reasons for choosing to assist hip joint flexion during running are explained;
- (2)
- The waist-loaded soft exosuit focuses almost all of its weight at the waist (near the center of gravity), which makes it a better fit for the human body and improves running stability;
- (3)
- The motion flexibility of the waist-loaded soft exosuit is tested, and it is also proved that the use of the waist-loaded soft exosuit could reduce metabolic consumption during running.
2. Waist-Loaded Soft Exosuit Design
2.1. Inspired Design Concept
2.2. System Overview
2.3. Hip Flexion Assistance Force Control
2.4. Control Strategy
3. Evaluation of the Soft Exosuit
3.1. Experimental Setup and Protocol
3.2. Motion Flexibility
3.3. Metabolic Consumption Experiment
4. Discussion
4.1. Discussion of This Work
4.2. Limitations of This Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HIL | Human-in-the-loop |
IMU | Inertial measurement unit |
STM32 | STMicroelectronics 32-bit Series Microcontroller Chip |
PD | Proportional-derivative |
RL | Reinforcement learning |
References
- Cao, W.; Chen, C.; Wang, D.; Wu, X.; Chen, L.; Xu, T.; Liu, J. A Lower Limb Exoskeleton with Rigid and Soft Structure for Loaded Walking Assistance. IEEE Robot. Autom. Lett. 2021, 7, 454–461. [Google Scholar] [CrossRef]
- Tucker, M.; Novoseller, E.; Kann, C.; Sui, Y.; Yue, Y.; Burdick, J.W.; Ames, A.D. Preference-Based Learning for Exoskeleton Gait Optimization. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 2351–2357. [Google Scholar] [CrossRef]
- Wang, J.; Fei, Y.; Chen, W. Integration, sensing, and control of a modular soft-rigid pneumatic lower limb exoskeleton. Soft Robot. 2020, 7, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Zhang, W.; Zhang, W.; Ding, X. A review on lower limb rehabilitation exoskeleton robots. Chin. J. Mech. Eng. 2019, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wehner, M.; Quinlivan, B.; Aubin, P.M.; Martinez-Villalpando, E.; Baumann, M.; Stirling, L.; Holt, K.; Wood, R.; Walsh, C. A lightweight soft exosuit for gait assistance. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 3362–3369. [Google Scholar] [CrossRef]
- Siviy, C.; Bae, J.; Baker, L.; Porciuncula, F.; Baker, T.; Ellis, T.D.; Awad, L.N.; Walsh, C.J. Offline assistance optimization of a soft exosuit for augmenting ankle power of stroke survivors during walking. IEEE Robot. Autom. Lett. 2020, 5, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Awad, L.N.; Bae, J.; O’donnell, K.; De Rossi, S.M.; Hendron, K.; Sloot, L.H.; Kudzia, P.; Allen, S.; Holt, K.G.; Ellis, T.D.; et al. A soft robotic exosuit improves walking in patients after stroke. Sci. Transl. Med. 2017, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, J.; Park, J.H.; Ku, S.; Jeong, Y.; Paik, N.J.; Park, Y.L. A soft wearable robotic ankle-foot-orthosis for post-stroke patients. IEEE Robot. Autom. Lett. 2019, 4, 2547–2552. [Google Scholar] [CrossRef]
- Mooney, L.M.; Rouse, E.J.; Herr, H.M. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J. Neuroeng. Rehabil. 2014, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Park, H.; Kim, J. Performance estimation of the lower limb exoskeleton for plantarflexion using surface electromyography (sEMG) signals. J. Biomech. Sci. Eng. 2017, 12, 16–00595. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Fiers, P.; Witte, K.A.; Jackson, R.W.; Poggensee, K.L.; Atkeson, C.G.; Collins, S.H. Human-in-the-loop optimization of exoskeleton assistance during walking. Science 2017, 356, 1280–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; Kim, M.; Kuindersma, S.; Walsh, C.J. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking. Sci. Robot. 2018, 3, eaar5438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Lee, G.; Heimgartner, R.; Revi, D.A.; Karavas, N.; Nathanson, D.; Galiana, I.; Eckert-Erdheim, A.; Murphy, P.; Perry, D.; et al. Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Science 2019, 365, 668–672. [Google Scholar] [CrossRef]
- Yang, J.; Park, J.; Kim, J.; Park, S.; Lee, G. Reducing the energy cost of running using a lightweight, low-profile elastic exosuit. J. Neuroeng. Rehabil. 2021, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Zhang, W.; Zhang, W.; Ju, L.; Ding, X. Human-centred adaptive control of lower limb rehabilitation robot based on human–robot interaction dynamic model. Mech. Mach. Theory 2021, 162, 104340. [Google Scholar] [CrossRef]
- Ding, Y.; Galiana, I.; Asbeck, A.T.; De Rossi, S.M.M.; Bae, J.; Santos, T.R.T.; De Araujo, V.L.; Lee, S.; Holt, K.G.; Walsh, C. Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.X.; Xu, J.; Chen, C.; Long, X.; Tao, D.; Wu, X. Vision-Assisted Autonomous Lower-Limb Exoskeleton Robot. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 3759–3770. [Google Scholar] [CrossRef]
- Dorn, T.W.; Schache, A.G.; Pandy, M.G. Muscular strategy shift in human running: Dependence of running speed on hip and ankle muscle performance. J. Exp. Biol. 2012, 215, 1944–1956. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Zhang, W.; Ding, X.; Sun, L. Parametric generation of three-dimensional gait for robot-assisted rehabilitation. Biol. Open 2020, 9, bio047332. [Google Scholar] [CrossRef] [Green Version]
- Koopman, B.; van Asseldonk, E.H.; van der Kooij, H. Speed-dependent reference joint trajectory generation for robotic gait support. J. Biomech. 2014, 47, 1447–1458. [Google Scholar] [CrossRef]
- Farris, D.J.; Sawicki, G.S. The mechanics and energetics of human walking and running: A joint level perspective. J. R. Soc. Interface 2012, 9, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Chen, C.; Hu, H.; Fang, K.; Wu, X. Effect of Hip Assistance Modes on Metabolic Cost of Walking with a Soft Exoskeleton. IEEE Trans. Autom. Sci. Eng. 2020, 18, 426–436. [Google Scholar] [CrossRef]
- Ye, X.; Chen, C.; Shi, Y.; Chen, L.; Wang, Z.; Zhang, Z.; Liu, Y.; Wu, X. A Time Division Multiplexing Inspired Lightweight Soft Exoskeleton for Hip and Ankle Joint Assistance. Micromachines 2021, 12, 1150. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, Z.; Chen, C.; He, Y.; Wang, D.; Wu, X. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking. Biosensors 2021, 11, 393. [Google Scholar] [CrossRef] [PubMed]
- Manti, M.; Cacucciolo, V.; Cianchetti, M. Stiffening in soft robotics: A review of the state of the art. IEEE Robot. Autom. Mag. 2016, 23, 93–106. [Google Scholar] [CrossRef]
- Collins, S.H.; Wiggin, M.B.; Sawicki, G.S. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 2015, 522, 212–215. [Google Scholar] [CrossRef] [Green Version]
- Browning, R.C.; Modica, J.R.; Kram, R.; Goswami, A. The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking. Med. Sci. Sport. Exerc. 2007, 39, 515–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akim, K.; Prashant, K.; Jamwal, S.; Hussain, M.; Ghayesh, H. State of the Art Lower Limb Robotic Exoskeletons for Elderly Assistance. IEEE Access 2019, 7, 95075–95086. [Google Scholar]
- Zhang, W.; Zhang, W.; Ding, X.; Sun, L. Optimization of the rotational asymmetric parallel mechanism for hip rehabilitation with force transmission factors. J. Mech. Robot. 2020, 12, 041006. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Ni, J.; Wu, X.; Liu, Y.; Ye, X.; Chen, C. Terrain Recognition and Gait Cycle Prediction Using IMU. In Proceedings of the 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), Guiyang, China, 17–22 July 2022; pp. 602–607. [Google Scholar]
- Chen, L.; Chen, C.; Wang, Z.; Ye, X.; Liu, Y.; Wu, X. A Novel Lightweight Wearable Soft Exosuit for Reducing the Metabolic Rate and Muscle Fatigue. Biosensors 2021, 11, 215. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Seo, K.; Lim, B.; Jang, J.; Kim, K.; Choi, H. Effects of assistance timing on metabolic cost, assistance power, and gait parameters for a hip-type exoskeleton. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 498–504. [Google Scholar]
- Lee, G.; Ding, Y.; Bujanda, I.G.; Karavas, N.; Walsh, C.J. Improved assistive profile tracking of soft exosuits for walking and jogging with off-board actuation. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017. [Google Scholar]
- Chen, C.; Zhang, Y.; Li, Y.; Wang, Z.; Wu, X. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance. Sensors 2020, 20, 4333. [Google Scholar] [CrossRef]
- Brockway, J.M. Derivation of formulae used to calculate energy expenditure in man. Hum. Nutr. Clin. Nutr. 1987, 41, 463–471. [Google Scholar] [PubMed]
- Jin, S.; Iwamoto, N.; Hashimoto, K.; Yamamoto, M. Experimental evaluation of energy efficiency for a soft wearable robotic suit. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Karavas, N.; Quinlivan, B.T.; LouiseRyan, D.; Perry, D.; Eckert-Erdheim, A.; Murphy, P.; Goldy, T.G.; Menard, N.; Athanassiu, M.; et al. Autonomous multi-joint soft exosuit for assistance with walking overground. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 2812–2819. [Google Scholar]
Part | Mass (kg) | Location |
---|---|---|
Waist belt | 0.32 | Waist |
Actuator | 0.214 | Waist |
Battery | 0.30 | Waist |
MCU | 0.08 | Waist |
Conduits | 0.052 | Waist |
IMUs | 0.024 | Thigh |
Wraps | 0.38 | Thigh |
Load cells | 0.05 | Thigh |
Other component | 0.512 | Waist |
Subjects | Gender | Height (cm) | Weight (kg) | Age (Years Old) |
---|---|---|---|---|
LX | Male | 176 | 72 | 25 |
XY | Male | 173 | 75 | 25 |
ZW | Male | 178 | 80 | 27 |
CS | Male | 175 | 78 | 23 |
LL | Male | 183 | 65 | 26 |
Research | Actuator Location | Assistance Scenario | Assistance Mode | Weight (kg) | Power | Metabolic Cost (%) |
---|---|---|---|---|---|---|
Zhang et al. [11] | Platform | Walking | Ankle plantar flexion | ∖ | Powerd | 5.9 |
Kim et al. [13] | Wearer | Walking and Running | Hip extension | 5.004 | Powerd | 9.3 |
Jim et al. [36] | Wearer | Walking | Hip flexion | ∖ | Powerd | 5.9 |
Sangjun et al. [37] | Wearer | Walking | Hip extension and flexion and Ankle plantar flexion | 5.1 | Powerd | 16.93 |
Ding et al. [16] | Platform | Walking | Hip extension and flexion and Ankle plantar flexion | ∖ | Powerd | 14.6 |
Collins et al. [26] | Wearer | Walking | Ankle plantar flexion | 0.816–1.006 | Unpowered | 7.2 ± 2.6 |
This work | Wearer | Running | Hip flexion | 1.932 | Powered | 7.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Chen, C.; Ye, X.; Wang, Z.; Liu, Y.; Cao, W.; Chen, S.; Wu, X. A Portable Waist-Loaded Soft Exosuit for Hip Flexion Assistance with Running. Micromachines 2022, 13, 157. https://doi.org/10.3390/mi13020157
Chen L, Chen C, Ye X, Wang Z, Liu Y, Cao W, Chen S, Wu X. A Portable Waist-Loaded Soft Exosuit for Hip Flexion Assistance with Running. Micromachines. 2022; 13(2):157. https://doi.org/10.3390/mi13020157
Chicago/Turabian StyleChen, Lingxing, Chunjie Chen, Xin Ye, Zhuo Wang, Yao Liu, Wujing Cao, Shaocong Chen, and Xinyu Wu. 2022. "A Portable Waist-Loaded Soft Exosuit for Hip Flexion Assistance with Running" Micromachines 13, no. 2: 157. https://doi.org/10.3390/mi13020157
APA StyleChen, L., Chen, C., Ye, X., Wang, Z., Liu, Y., Cao, W., Chen, S., & Wu, X. (2022). A Portable Waist-Loaded Soft Exosuit for Hip Flexion Assistance with Running. Micromachines, 13(2), 157. https://doi.org/10.3390/mi13020157