Multi-Modal Microfluidics (M3) for Sample Preparation of Liquid Biopsy: Bridging the Gap between Proof-of-Concept Demonstrations and Practical Applications
Abstract
:Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, J.; Xu, J.; Zhang, K.; Gu, W.; Nie, L.; Wang, G.; Luo, Y. Refining Cancer Management Using Integrated Liquid Biopsy. Theranostics 2020, 10, 2374–2384. [Google Scholar] [CrossRef] [PubMed]
- Neoh, K.H.; Hassan, A.A.; Chen, A.; Sun, Y.; Liu, P.; Xu, K.F.; Wong, A.S.T.; Han, R.P.S. Rethinking Liquid Biopsy: Microfluidic Assays for Mobile Tumor Cells in Human Body Fluids. Biomaterials 2018, 150, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Schwartzberg, L.S.; Horinouchi, H.; Chan, D.; Chernilo, S.; Tsai, M.L.; Isla, D.; Escriu, C.; Bennett, J.P.; Clark-Langone, K.; Svedman, C.; et al. Liquid Biopsy Mutation Panel for Non-Small Cell Lung Cancer: Analytical Validation and Clinical Concordance. Npj Precis. Oncol. 2020, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- Sierra, J.; Marrugo-Ramírez, J.; Rodriguez-Trujillo, R.; Mir, M.; Samitier, J. Sensor-Integrated Microfluidic Approaches for Liquid Biopsies Applications in Early Detection of Cancer. Sensors 2020, 20, 1317. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.L.; Wang, C.H.; Chen, Y.S.; Chien, C.C.; Kuo, F.C.; You, H.L.; Lee, M.S.; Lee, G.B. An Integrated Microfluidic System for Early Detection of Sepsis-Inducing Bacteria. Lab Chip 2021, 21, 113–121. [Google Scholar] [CrossRef]
- Faridi, M.A.; Ramachandraiah, H.; Banerjee, I.; Ardabili, S.; Zelenin, S.; Russom, A. Elasto-Inertial Microfluidics for Bacteria Separation from Whole Blood for Sepsis Diagnostics. J. Nanobiotechnol. 2017, 15, 1–9. [Google Scholar] [CrossRef]
- Foudeh, A.M.; Fatanat Didar, T.; Veres, T.; Tabrizian, M. Microfluidic Designs and Techniques Using Lab-on-a-Chip Devices for Pathogen Detection for Point-of-Care Diagnostics. Lab Chip 2012, 12, 3249–3266. [Google Scholar] [CrossRef]
- Chin, C.D.; Linder, V.; Sia, S.K. Commercialization of Microfluidic Point-of-Care Diagnostic Devices. Lab Chip 2012, 12, 2118–2134. [Google Scholar] [CrossRef]
- Zeming, K.K.; Vernekar, R.; Chua, M.T.; Quek, K.Y.; Sutton, G.; Krüger, T.; Kuan, W.S.; Han, J. Label-Free Biophysical Markers from Whole Blood Microfluidic Immune Profiling Reveal Severe Immune Response Signatures. Small 2021, 17, 2006123. [Google Scholar] [CrossRef]
- Antfolk, M.; Laurell, T. Continuous Flow Microfluidic Separation and Processing of Rare Cells and Bioparticles Found in Blood—A Review. Anal. Chim. Acta 2017, 965, 9–35. [Google Scholar] [CrossRef]
- Khoo, B.L.; Grenci, G.; Jing, T.; Bena Lim, Y.; Lee, S.C.; Thiery, J.P.; Han, J.; Lim, C.T. Liquid Biopsy and Therapeutic Response: Circulating Tumor Cell Cultures for Evaluation of Anticancer Treatment. Sci. Adv. 2016, 2, e1600274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warkiani, M.E.; Khoo, B.L.; Wu, L.; Tay, A.K.P.; Bhagat, A.A.S.; Han, J.; Lim, C.T. Ultra-Fast, Label-Free Isolation of Circulating Tumor Cells from Blood Using Spiral Microfluidics. Nat. Protoc. 2016, 11, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, Y.; Li, X.; Shi, Y.; Hu, B.; An, Y.; Zhu, Z.; Hong, G.; Yang, C.J. Frequency-Enhanced Transferrin Receptor Antibody-Labelled Microfluidic Chip (FETAL-Chip) Enables Efficient Enrichment of Circulating Nucleated Red Blood Cells for Non-Invasive Prenatal Diagnosis. Lab Chip 2018, 18, 2749–2756. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, T.; Xu, M.; Zhang, W.; Xiong, Y.; Nie, L.; Wang, Q.; Li, H.; Wang, W. A High-Throughput Liquid Biopsy for Rapid Rare Cell Separation from Large-Volume Samples. Lab Chip 2019, 19, 68–78. [Google Scholar] [CrossRef]
- Swennenhuis, J.F.; Tibbe, A.G.J.; Stevens, M.; Katika, M.R.; van Dalum, J.; Duy Tong, H.; van Rijn, C.J.M.; Terstappen, L.W.M.M. Self-Seeding Microwell Chip for the Isolation and Characterization of Single Cells. Lab Chip 2015, 15, 3039–3046. [Google Scholar] [CrossRef]
- Meunier, A.; Hernández-Castro, J.A.; Turner, K.; Li, K.; Veres, T.; Juncker, D. Combination of Mechanical and Molecular Filtration for Enhanced Enrichment of Circulating Tumor Cells. Anal. Chem. 2016, 88, 8510–8517. [Google Scholar] [CrossRef] [Green Version]
- Winer-Jones, J.P.; Vahidi, B.; Arquilevich, N.; Fang, C.; Ferguson, S.; Harkins, D.; Hill, C.; Klem, E.; Pagano, P.C.; Peasley, C.; et al. Circulating Tumor Cells: Clinically Relevant Molecular Access Based on a Novel CTC Flow Cell. PLoS ONE 2014, 9, e86717. [Google Scholar] [CrossRef]
- Nagrath, S.; Sequist, L.v.; Maheswaran, S.; Bell, D.W.; Irimia, D.; Ulkus, L.; Smith, M.R.; Kwak, E.L.; Digumarthy, S.; Muzikansky, A.; et al. Isolation of Rare Circulating Tumour Cells in Cancer Patients by Microchip Technology. Nature 2007, 450, 1235–1239. [Google Scholar] [CrossRef] [Green Version]
- Shields, C.W.; Ohiri, K.A.; Szott, L.M.; López, G.P. Translating Microfluidics: Cell Separation Technologies and Their Barriers to Commercialization. Cytom. Part B—Clin. Cytom. 2017, 92, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Liu, Y.; Zhang, W.; Lin, L.; Zhang, J.; Xiong, Y.; Nie, L.; Liu, X.; Li, H.; Wang, W. A Rapid Liquid Biopsy of Lung Cancer by Separation and Detection of Exfoliated Tumor Cells from Bronchoalveolar Lavage Fluid with a Dual-Layer “PERFECT” Filter System. Theranostics 2020, 10, 6517–6529. [Google Scholar] [CrossRef]
- Mishra, A.; Dubash, T.D.; Edd, J.F.; Jewett, M.K.; Garre, S.G.; Murat Karabacak, N.; Rabe, D.C.; Mutlu, B.R.; Walsh, J.R.; Kapur, R.; et al. Ultrahigh-Throughput Magnetic Sorting of Large Blood Volumes for Epitope-Agnostic Isolation of Circulating Tumor Cells. Proc. Natl. Acad. Sci. USA 2020, 117, 16839–16847. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, B.; Soleimani, N.; Rabiee, N.; Kalbasi, A.; Karimi, M.; Hamblin, M.R. Point-of-Care Microfluidic Devices for Pathogen Detection. Biosens. Bioelectron. 2018, 117, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Torab, P.; Mach, K.E.; Surrette, C.; England, M.R.; Craft, D.W.; Thomas, N.J.; Liao, J.C.; Puleo, C.; Wong, P.K. Adaptable Microfluidic System for Single-Cell Pathogen Classification and Antimicrobial Susceptibility Testing. Proc. Natl. Acad. Sci. USA 2019, 116, 10270–10279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Ma, F.; Bachman, H.; Cameron, C.E.; Zeng, X.; Huang, T.J. Acoustofluidic Bacteria Separation. J. Micromech. Microeng. 2016, 27, 015031. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Li, S.; Xiao, M.; Gong, J.; Li, H.; Wang, W. Rapid Separation and Detection of Rare Fungi Spores from Whole Blood Based on a Dual-Layer Micropore Arrayed Filtration; microTAS 2019; Poster: Basel, Switzerland, 2019; pp. 829–830. [Google Scholar]
- Kim, U.; Soh, H.T. Simultaneous Sorting of Multiple Bacterial Targets Using Integrated Dielectrophoretic-Magnetic Activated Cell Sorter. Lab Chip 2009, 9, 2313–2318. [Google Scholar] [CrossRef]
- Thakur, A.; Qiu, G.; Xu, C.; Han, X.; Yang, T.; Ng, S.P.; Chan, Y.K.W.; Wu, L.C.M.; Lee, Y. Label-free sensing of exosomal MCT1 and CD147 for tracking metabolic reprogramming and malignant progression in glioma. Sci. Adv. 2020, 6, eaaz6119. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, X.; Gardashova, G.; Yang, Y.; Zhang, Y.; Xu, L.; Zeng, Y. Molecular and functional extracellular vesicle analysis using nanopatterned microchips monitors tumor progression and metastasis. Sci. Transl. Med. 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, Z.; Hu, J.; Yang, D.; Chen, X.; Wang, Q.; Liu, J.; Dou, M.; Peng, W.; Wu, W.; et al. High-Throughput Single-EV Liquid Biopsy-Rapid, Simultaneous, and Multiplexed Detection of Nucleic Acids, Proteins, and Their Combinations. Sci. Adv. 2020, 6, eabc1204. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, X.; He, M.; Shang, Y.; Tetlow, A.L.; Godwin, A.K.; Zeng, Y. Ultrasensitive Detection of Circulating Exosomes with a 3D-Nanopatterned Microfluidic Chip. Nat. Biomed. Eng. 2019, 3, 438–451. [Google Scholar] [CrossRef]
- Wu, M.; Ouyang, Y.; Wang, Z.; Zhang, R.; Huang, P.H.; Chen, C.; Li, H.; Li, P.; Quinn, D.; Dao, M.; et al. Isolation of Exosomes from Whole Blood by Integrating Acoustics and Microfluidics. Proc. Natl. Acad. Sci. USA 2017, 114, 10584–10589. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Naranjo, J.C.; Wu, H.J.; Ugaz, V.M. Microfluidics for Exosome Isolation and Analysis: Enabling Liquid Biopsy for Personalized Medicine. Lab Chip 2017, 17, 3558–3577. [Google Scholar] [CrossRef] [PubMed]
- Füzéry, A.K.; Levin, J.; Chan, M.M.; Chan, D.W. Translation of Proteomic Biomarkers into FDA Approved Cancer Diagnostics: Issues and Challenges. Clin. Proteom. 2013, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliescu, F.S.; Poenar, D.P.; Yu, F.; Ni, M.; Chan, K.H.; Cima, I.; Taylor, H.K.; Cima, I.; Iliescu, C. Recent Advances in Microfluidic Methods in Cancer Liquid Biopsy. Biomicrofluidics 2019, 13, 041503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Senapati, S.; Chang, H.C. Liquid Biopsy Technologies Based on Membrane Microfluidics: High-Yield Purification and Selective Quantification of Biomarkers in Nanocarriers. Electrophoresis 2020, 41, 1878–1892. [Google Scholar] [CrossRef] [PubMed]
- Caicedo, H.H.; Brady, S.T. Microfluidics: The Challenge Is to Bridge the Gap Instead of Looking for a “Killer App”. Trends Biotechnol. 2016, 34, 1–3. [Google Scholar] [CrossRef]
- Ortseifen, V.; Viefhues, M.; Wobbe, L.; Grünberger, A. Microfluidics for Biotechnology: Bridging Gaps to Foster Microfluidic Applications. Front. Bioeng. Biotechnol. 2020, 8, 1324. [Google Scholar] [CrossRef]
- Mizuno, M.; Yamada, M.; Mitamura, R.; Ike, K.; Toyama, K.; Seki, M. Magnetophoresis-Integrated Hydrodynamic Filtration System for Size-and Surface Marker-Based Two-Dimensional Cell Sorting. Anal. Chem. 2013, 85, 7666–7673. [Google Scholar] [CrossRef]
- Laurell, T.; Petersson, F.; Nilsson, A. Chip Integrated Strategies for Acoustic Separation and Manipulation of Cells and Particles. Chem. Soc. Rev. 2007, 36, 492–506. [Google Scholar] [CrossRef]
No. | Targets of Interest | Working Principle | Modal Category | TSP Performance | Sample | Product/ Company | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
Throughput #1 | Sensitivity #2 | Purity #3 | |||||||
1 | CTC | Bio-affinity | Single-modal | Low | High | High | Blood | CTC-Chip/ Veridex LLC *1 | [18] |
2 | CTC | Size differences (Dean flow fractionation) | Single-modal | Moderate–High | High | Moderate | Blood | ClearCell® FX system/ Biolidics *2 | [12] |
3 | CTC | Bio-affinity (magnetophoresis) | Single-modal | Low | High | High | Blood | LiquidBiopsy®/ Cynvenio *3 | [17,21] |
4 | CTC/ ETC/ Fungi | Size differences (filtration) | Single-modal | High | High | Moderate–High | Blood BALF Urine | PERFECT filter/ Branemagic *4 | [20,21,25] |
CTC | Single-modal | Blood | CTC enumeration/ VyCAP *5 | [15] | |||||
5 | CTC | Size differences (filtration) and bio-affinity | Multi-modal (on-site M3) | High | High | High | Blood | N/A | [16] |
6 | CTC/ WBC/ Bacteria/ Exosome | Size differences (acoustophoresis) | Single-modal | Low–Moderate | Moderate–High | Moderate | Blood | ACOUTRAP, ACOUWASH/ AcouSort *6 | [39] |
8 | Nucleated RBC | Size differences (deterministic lateral displacement) and bio-affinity | Multi-modal (on-site M3) | Low–Moderate | High | High | Blood | FETAL-Chip/ Wisdom healthy *7 | [13] |
9 | Bacteria | Size differences (elasto-inertial microfluidics) | Single-modal | Low–Moderate | Moderate–High | Moderate | Blood | N/A | [6] |
10 | Bacteria | Size differences (filtration) and bio-affinity (magnetophoresis) | Multi-modal (in-series M3) | Moderate–High | Moderate–High | High | Blood | N/A | [5] |
11 | Bacteria | Electrical property (dielectrophoresis) and bio-affinity (magnetophoresis) | Multi-modal (on-site M3) | Low | High | High | Buffer | N/A | [26] |
12 | Exosome | Size differences (e.g., filtration, deterministic lateral displacement, acoustophoresis) or bio-affinity | Single-modal | Low–Moderate | Moderate–High | Moderate | Blood Urine CSF Saliva | Creative Biolabs® Exosome *8 | [32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, W. Multi-Modal Microfluidics (M3) for Sample Preparation of Liquid Biopsy: Bridging the Gap between Proof-of-Concept Demonstrations and Practical Applications. Micromachines 2022, 13, 209. https://doi.org/10.3390/mi13020209
Liu Y, Wang W. Multi-Modal Microfluidics (M3) for Sample Preparation of Liquid Biopsy: Bridging the Gap between Proof-of-Concept Demonstrations and Practical Applications. Micromachines. 2022; 13(2):209. https://doi.org/10.3390/mi13020209
Chicago/Turabian StyleLiu, Yaoping, and Wei Wang. 2022. "Multi-Modal Microfluidics (M3) for Sample Preparation of Liquid Biopsy: Bridging the Gap between Proof-of-Concept Demonstrations and Practical Applications" Micromachines 13, no. 2: 209. https://doi.org/10.3390/mi13020209
APA StyleLiu, Y., & Wang, W. (2022). Multi-Modal Microfluidics (M3) for Sample Preparation of Liquid Biopsy: Bridging the Gap between Proof-of-Concept Demonstrations and Practical Applications. Micromachines, 13(2), 209. https://doi.org/10.3390/mi13020209