Three Frequency Up-Converting Piezoelectric Energy Harvesters Caused by Internal Resonance Mechanism: A Narrative Review
Abstract
:1. Introduction
2. Piezoelectric Oscillating Structures
2.1. Resonant Frequency Matching Strategy
2.2. Frequency Up-Conversion Strategy
3. FUC Oscillators Based on an Internal Resonance Mechanism
3.1. 1:3 Internal Resonance System
3.2. 1:2 Internal Resonance System
3.3. 1:2:6 Internal Resonance System
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khalaf, O.I.; Sabbar, B.M. An overview on wireless sensor networks and finding optimal location of nodes. Period. Eng. Nat. Sci. 2019, 7, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Piana, G.; Ricciardi, M.; Bella, F.; Cucciniello, R.; Proto, A.; Claudio, G. Poly(glycidyl ether)s recycling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chem. Eng. J. 2020, 382, 122934. [Google Scholar] [CrossRef]
- Silva-Leon, J.; Cioncolini, A.; Nabawy, M.R.A.; Revell, A.; Kennaugh, A. Simultaneous wind and solar energy harvesting with inverted flags. Appl. Energy 2019, 239, 846–858. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.; Khan, F.U. Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications. Energy Convers. Manag. 2018, 172, 611–618. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, S.; Zhang, Z.; Yurchenko, D. High-performance piezoelectric wind energy harvester with y-shaped attachments. Energy Convers. Manag. 2018, 181, 645–652. [Google Scholar] [CrossRef]
- Yilmaz, F. Energy, exergy and economic analyses of a novel hybrid ocean thermal energy conversion system for clean power production. Energy Convers. Manag. 2019, 196, 557–566. [Google Scholar] [CrossRef]
- Hu, H.; Da, X.; Zhang, H.; Ni, L. Full-duplex cognitive radio with rf energy harvesting. Wirel. Pers. Commun. 2020, 111, 853–865. [Google Scholar] [CrossRef]
- Shan, X.; Li, H.; Yang, Y.; Feng, J.; Wang, Y.; Xie, T. Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration. Energy 2019, 172, 134–140. [Google Scholar] [CrossRef]
- Ming, Y.; Cao, Z.; Luo, J. Characterization the influences of diodes to piezoelectric energy harvester. Int. J. Smart Nano Mater. 2018, 9, 151–166. [Google Scholar]
- Elvin, N.G.; Elvin, A.A. An experimentally validated electromagnetic energy harvester. J. Sound Vib. 2011, 330, 2314–2324. [Google Scholar] [CrossRef]
- Peyman, H.; Stiharu, I.; Bhat, R. Performance enhancement of cantilever piezoelectric energy harvesters by sizing analysis. Int. J. Smart Nano Mater. 2020, 11, 93–116. [Google Scholar]
- Tao, K.; Chen, Z.; Yi, H.; Zhang, R.; Shen, Q.; Wu, J.; Tang, L.; Fan, K.; Fu, Y.; Miao, J.; et al. Hierarchical Honeycomb-Structured Electret/Triboelectric Nanogenerator for Biomechanical and Morphing Wing Energy Harvesting. Nano-Micro Lett. 2021, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- Dizdar, T.O.; Kocausta, G.; Gülcan, E.; Gülsoy, Ö.Y. A new method to produce high voltage static electric load for electrostatic separation–Triboelectric charging. Powder Technol. 2018, 327, 89–95. [Google Scholar] [CrossRef]
- Guo, S.; Wang, P.; Zhang, J.; Luan, W.; Xia, Z.; Cao, L.; He, Z. Flexible liquid metal coil prepared for electromagnetic energy harvesting and wireless charging. Front. Energy 2019, 13, 474–482. [Google Scholar] [CrossRef]
- Kanti, S.P.; Subrata, M.; Somobrata, A. Self-Powered Sensors and Flexible Triboelectric Nanogenerator for Powering Portable Electronics. J. Nanoence Nanotechnol. 2018, 18, 1741–1746. [Google Scholar]
- Ahmed, A.; Hassan, I.; Helal, A.S.; Sencadas, V.; Radhi, A.; Jeong, K.C.; El-Kaddy, M.F. Triboelectric Nanogenerator versus Piezoelectric Generator at Low-Frequency (<4 Hz): A quantitative Comparison. iScience 2020, 23, 101286. [Google Scholar] [CrossRef]
- Saxena, S.; Sharma, R. Effect of shape of seismic mass on potential generated by MEMS-based cantilever-type piezoelectric energy harvester. J. Micro/Nanolithography MEMS MOEMS 2014, 13, 033012. [Google Scholar] [CrossRef]
- Li, P.; Xu, N.; Gao, C. A Multi-Mechanisms Composite Frequency Up-Conversion Energy Harvester. Int. J. Precis. Eng. Manuf. 2020, 21, 1781–1788. [Google Scholar] [CrossRef]
- Zhu, D.; Tudor, M.; Beeby, S. Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Meas. Sci. Technol. 2010, 21, 022001. [Google Scholar] [CrossRef]
- Meruane, V.; Pichara, K. A broadband vibration-based energy harvester using an array of piezoelectric beams connected by springs. Shock Vib. 2016, 9614842. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Al-Furjan, M.S.H.; Zou, J.; Liu, W. A review on heat and mechanical energy harvesting from human–Principles, prototypes and perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3582–3609. [Google Scholar] [CrossRef]
- Sun, X.; Wang, P.; Wang, Z.; Xia, Z.; Yue, X.; Ding, X.; Shi, S. A piezoelectric vibration energy harvester with the adjustable frequency. Micronanoelectronic Technol. 2014, 51, 518–522. (In Chinese) [Google Scholar]
- Tang, L.; Yang, Y. A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl. Phys. Lett. 2012, 101, 094102. [Google Scholar] [CrossRef]
- Rui, X.; Zeng, Z.; Li, Y.; Zhang, Y.; Huang, X.; Sha, Z. Modeling and analysis of a rotational piezoelectric energy harvester with limiters. J. Mech. Sci. Technol. 2019, 33, 5169–5176. [Google Scholar] [CrossRef]
- Wang, Y.J.; Chuang, T.Y.; Yu, J.H. Design and kinetic analysis of piezoelectric energy harvesters with self-adjusting resonant frequency. Smart Mater. Struct. 2017, 26, 095037. [Google Scholar]
- Wang, Y.J.; Chuang, T.Y.; Lee, C. Resonant Frequency Self-tunable Piezoelectric Cantilevers for Energy Harvesting and Disturbing Torque Absorbing. Sens. Actuators A Phys. 2019, 285, 25–34. [Google Scholar] [CrossRef]
- Dechant, E.; Fedulov, F.; Fetisov, L.Y.; Shamonin, M. Bandwidth Widening of Piezoelectric Cantilever Beam Arrays by Mass-Tip Tuning for Low-Frequency Vibration Energy Harvesting. Appl. Sci. 2017, 7, 1324. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Yang, J.; Yu, Q.; Zhao, J.; Liu, J.; Wen, Y.; Li, P. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies. Rev. Sci. Instrum. 2016, 87, 1316–11324. [Google Scholar] [CrossRef]
- Leadenham, S.; Erturk, A. Nonlinear m-shaped broadband piezoelectric energy harvester for very low base accelerations: Primary and secondary resonances. Smart Mater. Struct. 2015, 24, 055021. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Gou, Y.; Zhang, A. Synthesis of compliant multi-stable mechanisms through use of a single bistable mechanism. J. Mech. Des. 2011, 133, 081007. [Google Scholar] [CrossRef]
- Liu, H.; Lee, C.; Kobayashi, T.; Tay, C.; Quan, C. Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Mater. Struct. 2012, 21, 035005. [Google Scholar] [CrossRef]
- Yao, H.; Wang, Y.; Cao, Y.; Wen, B. Multi-stable nonlinear energy sink for rotor system. Int. J. Non-Linear Mech. 2020, 118, 103273. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Huang, H.; Wu, Z.; Cao, Y. Broadband spring-connected bi-stable piezoelectric vibration energy harvester with variable potential barrier. Results Phys. 2020, 18, 103173. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S.; Bulsara, A.R.; Marletta, V. A bistable buckled beam based approach for vibrational energy harvesting. Sens. Actuators A Phys. 2014, 211, 153–161. [Google Scholar] [CrossRef]
- Liu, W.; Badel, A.; Formosa, F.; Wu, Y.; Agbossou, A. Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting. Smart Mater. Struct. 2013, 22, 035013. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, W.; Li, W.; Wei, K.; Hu, K.; Peng, Z.; Meng, G. Magnetically coupled flex-tensional transducer for wideband vibration energy harvesting: Design, modeling and experiments. J. Sound Vib. 2018, 416, 55–79. [Google Scholar] [CrossRef]
- Chen, H.; Tang, T.; Ait-Ahmed, N.; Benbouzid, M.; Machmoum, M.; Zaim, M. Attraction, challenge and current status of marine current energy. IEEE Access 2018, 6, 12665–12685. [Google Scholar] [CrossRef]
- Shan, X.; Tian, H. A curved panel energy harvester for aeroelastic vibration. Appl. Energy 2019, 249, 1939–1952. [Google Scholar] [CrossRef]
- Khalid, S.; Raouf, I.; Khan, A.; Kim, N.; Kim, H.s. A review of human-powered energy harvesting for smart electronics: Recent progress and challenges. Int. J. Precis. Eng. Manuf. -Green Technol. 2019, 6, 821–851. [Google Scholar] [CrossRef]
- Yang, B.; Yi, Z.; Tang, G.; Liu, J. A gullwing-structured piezoelectric rotational energy harvester for low frequency energy scavenging. Appl. Phys. Lett. 2019, 115, 063901. [Google Scholar] [CrossRef]
- Kulah, H.; Najafi, K. Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sens. J. 2008, 8, 261–268. [Google Scholar] [CrossRef]
- Abedini, A.; Wang, F. Energy harvesting of a frequency up-conversion piezoelectric harvester with controlled impact. Eur. Phys. J. Spec. Top. 2019, 228, 1459–1474. [Google Scholar] [CrossRef]
- Fu, X.; Liao, W.H. Modeling and Analysis of Piezoelectric Energy Harvesting With Dynamic Plucking Mechanism. J. Vib. Acoust. 2019, 141, 031002. [Google Scholar] [CrossRef]
- Han, D.; Yun, K. Piezoelectric energy harvester using mechanical frequency up conversion for operation at low-level accelerations and low-frequency vibration. Microsyst. Technol. 2015, 21, 1669–1676. [Google Scholar] [CrossRef]
- Wang, L.; Chen, R.; Ren, L.; Xia, H.; Zhang, Y. Design and experimental study of a bistable magnetoelectric vibration energy harvester with nonlinear magnetic force scavenging structure. Int. J. Appl. Electromagn. Mech. 2019, 60, 1–14. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, H.; Qiu, J.; Liu, W.; Zhao, J. An internal resonance-based frequency up-converting energy harvester. J. Intell. Mater. Syst. Struct. 2018, 29, 2766–2781. [Google Scholar] [CrossRef]
- Huang, M.; Hou, C.; Li, Y.; Liu, H.; Wang, F.; Chen, T.; Yang, Z.; Tang, G.; Sun, L. A low-frequency MEMS piezoelectric energy harvesting system based on frequency up-conversion mechanism. Micromachines 2019, 10, 639. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.L.; Chen, K.W.; Chen, C.D. Model and characterization of a press-button-type piezoelectric energy harvester. IEEE/ASME Trans. Mechatron. 2018, 24, 132–143. [Google Scholar] [CrossRef]
- Chen, C.D.; Wu, Y.H.; Su, P.W. Dynamic Modeling and Experimental Validation of an Impact-Driven Piezoelectric Energy Harvester in Magnetic Field. Sensors 2020, 20, 6170. [Google Scholar] [CrossRef]
- Pozzi, M.; Zhu, M. Plucked piezoelectric bimorphs for energy harvesting. In Advances in Energy Harvesting Methods; Elvin, N., Erturk, A., Eds.; Springer: New York, NY, USA, 2013; pp. 119–140. [Google Scholar]
- Tang, L.; Yang, Y.; Soh, C. Improving functionality of vibration energy harvesters using magnets. J. Intell. Mater. Syst. Struct. 2012, 23, 1433–1449. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, H.; Qiu, J.; Lei, H. A 2-degree-of-freedom cubic nonlinear piezoelectric harvester intended for practical low-frequency vibration. Sens. Actuators A Phys. 2017, 264, 1–10. [Google Scholar] [CrossRef]
- Wu, Y.; Qiu, J.; Zhou, S.; Ji, H.; Chen, Y.; Li, S. A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Appl. Energy 2018, 231, 600–614. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Fan, K.; Ji, H.; Qiu, J. Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism. Mech. Syst. Signal Process. 2022, 162, 108038. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, C.; Wu, Z.; Chen, F. 1:2 internal resonance of coupled dynamic system with quadratic and cubic nonlinearities. Appl. Math. Mech. 2001, 22, 917–924. [Google Scholar] [CrossRef]
- Sayed, M.; Kamel, M. 1:2 and 1:3 internal resonance active absorber for non-linear vibrating system. Appl. Math. Model. 2012, 36, 310–332. [Google Scholar] [CrossRef]
- Wu, X.; Lee, D.W. Magnetic coupling between folded cantilevers for high-efficiency broadband energy harvesting. Sens. Actuators A Phys. 2015, 234, 17–22. [Google Scholar] [CrossRef]
- Xiong, L.; Tang, L.; Mace, B.R. Internal resonance with commensurability induced by an auxiliary oscillator for broad-band energy harvesting. Appl. Phys. Lett. 2016, 108, 203901. [Google Scholar] [CrossRef] [Green Version]
Ref. | Schematic Diagrams | Classification | Matching Mechanism | Operation Bandwidth |
---|---|---|---|---|
[22] | Resonant frequency tuning | Magnetic force induced stiffness variation | 51~110 Hz | |
[23] | Resonant frequency tuning and multi-modal | Magnetic attractive force induced stiffness variation and multiple degrees of freedom | 23~30 Hz | |
[28] | Multi-modal | Multiple degrees of freedom | Around 16, 21 and 28 Hz | |
[34] | Nonlinear wideband | Mechanical load induced nonlinearity | 4~12 Hz |
Ref. | Schematic Diagrams | Mechanism | FUC Factor | Excitation Source |
---|---|---|---|---|
[47] | Mechanical impact | 25.3 (40 Hz → 1012 Hz) | Acceleration excitation (0.3 g) | |
[50] | Mechanical plucking | ~297 (~1 Hz → 297 Hz) | Human naturally walk | |
[51] | Impulse-like magnetic force | ~2.5 (0.8 Hz →~2 Hz) | Excitation displacement (50 mm) | |
[44] | Impulse-like acceleration | 6.4 (12 Hz → 77 Hz) | Acceleration excitation (0.5 g) | |
[52] | Internal resonance (1:3) | 3.0 (7.78 Hz → 23.41 Hz) | Acceleration excitation (0.1 g) | |
[53] | Internal resonance (1:2) | 2.0 (1.83 Hz → 3.65 Hz) | Acceleration excitation (0.05 g) | |
[54] | Internal resonance (1:2:6) | 5.9 (2.00 Hz → 11.75 Hz) | Acceleration excitation (0.25 g) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Lu, Y.; Wang, Z.; Li, S.; Wu, Y. Three Frequency Up-Converting Piezoelectric Energy Harvesters Caused by Internal Resonance Mechanism: A Narrative Review. Micromachines 2022, 13, 210. https://doi.org/10.3390/mi13020210
Liu J, Lu Y, Wang Z, Li S, Wu Y. Three Frequency Up-Converting Piezoelectric Energy Harvesters Caused by Internal Resonance Mechanism: A Narrative Review. Micromachines. 2022; 13(2):210. https://doi.org/10.3390/mi13020210
Chicago/Turabian StyleLiu, Jian, Yongling Lu, Zhen Wang, Sen Li, and Yipeng Wu. 2022. "Three Frequency Up-Converting Piezoelectric Energy Harvesters Caused by Internal Resonance Mechanism: A Narrative Review" Micromachines 13, no. 2: 210. https://doi.org/10.3390/mi13020210
APA StyleLiu, J., Lu, Y., Wang, Z., Li, S., & Wu, Y. (2022). Three Frequency Up-Converting Piezoelectric Energy Harvesters Caused by Internal Resonance Mechanism: A Narrative Review. Micromachines, 13(2), 210. https://doi.org/10.3390/mi13020210