Controllable Melting and Flow of Ag in Self-Formed Amorphous Carbonaceous Shell for Nanointerconnection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanorobotic System
2.3. Tungsten Probe Fabrication
2.4. Assembly the MWCNT–Ag NW Nanostructure
3. Results
3.1. Controllable Melting of the Encapsulated Ag
3.2. Controllable Flow of the Melting Ag and Product Characterization
3.3. Reconfigurable Nanointerconnection
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, L.Y.; Yuan, K.P.; Yang, J.H.; Hang, C.Z.; Ma, H.P.; Ji, X.M.; Devi, A.; Lu, H.L.; Zhang, D.W. Hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing. Microsyst. Nanoeng. 2020, 6, 30. [Google Scholar] [CrossRef]
- Liu, D.; Lin, L.; Chen, Q.; Zhou, H.; Wu, J. Low power consumption gas sensor created from silicon nanowires/TiO2 core-shell heterojunctions. ACS Sens. 2017, 2, 1491–1497. [Google Scholar] [CrossRef]
- Xu, W.; Lu, Y.; Lei, W.; Sui, F.; Ma, R.; Qi, R.; Huang, R. FIB-assisted fabrication of single tellurium nanotube based high performance photodetector. Micromachines 2021, 13, 11. [Google Scholar] [CrossRef]
- Wang, D.; Liu, X.; Kang, Y.; Wang, X.; Wu, Y.; Fang, S.; Yu, H.; Memon, M.H.; Zhang, H.; Hu, W.; et al. Bidirectional photocurrent in p–n heterojunction nanowires. Nat. Electron. 2021, 4, 645–652. [Google Scholar] [CrossRef]
- Cheriton, R.; Sadaf, S.M.; Robichaud, L.; Krich, J.J.; Mi, Z.; Hinzer, K. Two-photon photocurrent in InGaN/GaN nanowire intermediate band solar cells. Commun. Mater. 2020, 1, 63. [Google Scholar] [CrossRef]
- Jenkins, J.; Mantell, J.; Neal, C.; Gholinia, A.; Verkade, P.; Nobbs, A.H.; Su, B. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nat. Commun. 2020, 11, 1626. [Google Scholar] [CrossRef]
- Randolph, S.J.; Fowlkes, J.D.; Rack, P.D. Focused, nanoscale electron-beam-induced deposition and etching. Crit. Rev. Solid State Mater. Sci. 2007, 31, 55–89. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, Q.; Dong, L.; Wang, H.; Huang, Q.; Fukuda, T. Contact annealing for self-soldering: In situ investigation into interfaces between PVP-coated silver nanoelectrodes and carbon nanotubes. ACS Appl. Mater. Interfaces 2019, 11, 36035–36043. [Google Scholar] [CrossRef]
- Moreno-Moreno, M.; Ares, P.; Moreno, C.; Zamora, F.; Gomez-Navarro, C.; Gomez-Herrero, J. AFM manipulation of gold nanowires to build electrical circuits. Nano Lett. 2019, 19, 5459–5468. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Cao, K.; Gao, L.; Liao, W.; Liu, J.; Sun, X.; Wang, H.; Rao, F.; Lu, Y. Cold welding assisted self-healing of fractured ultrathin Au nanowires. Nano Express 2020, 1, 020014. [Google Scholar] [CrossRef]
- Dong, L.; Tao, X.; Zhang, L.; Zhang, X.; Nelson, B.J. Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett. 2007, 7, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Su, W.; Qin, X.; Cheng, K.; Ding, W.; Ma, L.; Cui, Z.; Chen, J.; Rao, J.; Ouyang, H.; et al. Mechanical/electrical characterization of ZnO nanomaterial based on AFM/nanomanipulator embedded in SEM. Micromachines 2021, 12, 248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, B.; Hu, L. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J. Solid State Chem. 1996, 121, 105–110. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, Q.; Wei, Z.; Chen, X.; Wang, H.; Huang, Q.; Fukuda, T. Design and characterization of a 16-DOFs nanorobotic manipulation system for repetitive and pre-programmable tasks. IEEE Trans. Nanotechnol. 2019, 18, 1208–1212. [Google Scholar] [CrossRef]
- Chatterjee, A.; Bai, T.; Edler, F.; Tegenkamp, C.; Weide-Zaage, K.; Pfnur, H. Electromigration and morphological changes in Ag nanostructures. J. Phys. Condens. Matter. 2018, 30, 084002. [Google Scholar] [CrossRef]
- Takeuchi, S.; Endo, H. The electric resistivity of the metals in the molten state. Trans. Jpn. Inst. Met. 1962, 3, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Liu, M.; Shao, C.; Li, X.; Liu, H.; Li, X.; Liu, Y. Nitrogen doping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage. Electrochim. Acta 2020, 330, 135212. [Google Scholar] [CrossRef]
- Zou, R.; Zhang, Z.; Liu, Q.; Xu, K.; Lu, A.; Hu, J.; Li, Q.; Bando, Y.; Golberg, D. Melting of metallic electrodes and their flowing through a carbon nanotube channel within a device. Adv. Mater. 2013, 25, 2693–2699. [Google Scholar] [CrossRef]
- Jin, C.; Suenaga, K.; Iijima, S. Plumbing carbon nanotubes. Nat. Nanotechnol. 2008, 3, 17–21. [Google Scholar] [CrossRef]
- Costa, P.M.; Gautam, U.K.; Bando, Y.; Golberg, D. Direct imaging of Joule heating dynamics and temperature profiling inside a carbon nanotube interconnect. Nat. Commun. 2011, 2, 421. [Google Scholar] [CrossRef]
- Melinte, G.; Moldovan, S.; Hirlimann, C.; Liu, X.; Begin-Colin, S.; Begin, D.; Banhart, F.; Pham-Huu, C.; Ersen, O. Towards nanoprinting with metals on graphene. Nat. Commun. 2015, 6, 8071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Gao, Y. Electrically driven gallium movement in carbon nanotubes. Nanotechnology 2012, 23, 065704. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bando, Y.; Golberg, D. Single-crystalline In2O3 nanotubes filled with In. Adv. Mater. 2003, 15, 581–585. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, J.Q.; Wei, F.; Zhu, J. Mass transportation mechanism in electric-biased carbon nanotubes. Nano Lett. 2010, 10, 4309–4315. [Google Scholar] [CrossRef] [PubMed]
- Schebarchov, D.; Hendy, S.C. Capillary absorption of metal nanodroplets by single-wall carbon nanotubes. Nano Lett. 2008, 8, 2253–2257. [Google Scholar] [CrossRef] [PubMed]
- Edgar, K.; Hendy, S.C.; Schebarchov, D.; Tilley, R.D. Reverse capillary action in carbon nanotubes: Sucking metal nanoparticles out of nanotubes. Small 2011, 7, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Chang, Y.C.; Wang, S.C.; Chen, L.Y.; Lien, D.H.; Chen, L.J.; Chang, C.S. Critical capillary absorption of current-melted silver nanodroplets into multiwalled carbon nanotubes. Small 2012, 8, 2158–2162. [Google Scholar] [CrossRef] [PubMed]
- Stöffler, D.; Marz, M.; Kießig, B.; Tomanic, T.; Schäfer, R.; Löhneysen, H.v.; Hoffmann-Vogel, R. Resistance-voltage dependence of nanojunctions during electromigration in ultrahigh vacuum. Phys. Rev. B 2014, 90, 115406. [Google Scholar] [CrossRef] [Green Version]
- Ebnesajjad, S. Surface and material characterization techniques. In Surface Treatment of Materials for Adhesive Bonding, 2nd ed.; William Andrew Publishing: Norwich, NY, USA, 2014; pp. 39–75. [Google Scholar] [CrossRef]
- Liu, Q.; Zou, R.; Bando, Y.; Golberg, D.; Hu, J. Nanowires sheathed inside nanotubes: Manipulation, properties and applications. Prog. Mater. Sci. 2015, 70, 1–49. [Google Scholar] [CrossRef]
- Soldano, C. Hybrid metal-based carbon nanotubes: Novel platform for multifunctional applications. Prog. Mater. Sci. 2015, 69, 183–212. [Google Scholar] [CrossRef]
- Yeshua, T.; Layani, M.; Dekhter, R.; Huebner, U.; Magdassi, S.; Lewis, A. Micrometer to 15 nm printing of metallic inks with fountain pen nanolithography. Small 2018, 14, 1702324. [Google Scholar] [CrossRef] [PubMed]
- Shreya, S.; Khan, A.H.; Kumar, N.; Amin, S.I.; Anand, S. Core-shell junctionless nanotube tunnel field effect transistor: Design and sensitivity analysis for biosensing application. IEEE Sens. J. 2020, 20, 672–679. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Shi, Q.; Wang, H.; Shang, J.; Huang, Q.; Fukuda, T. Controllable Melting and Flow of Ag in Self-Formed Amorphous Carbonaceous Shell for Nanointerconnection. Micromachines 2022, 13, 213. https://doi.org/10.3390/mi13020213
Yu Z, Shi Q, Wang H, Shang J, Huang Q, Fukuda T. Controllable Melting and Flow of Ag in Self-Formed Amorphous Carbonaceous Shell for Nanointerconnection. Micromachines. 2022; 13(2):213. https://doi.org/10.3390/mi13020213
Chicago/Turabian StyleYu, Zhiqiang, Qing Shi, Huaping Wang, Junyi Shang, Qiang Huang, and Toshio Fukuda. 2022. "Controllable Melting and Flow of Ag in Self-Formed Amorphous Carbonaceous Shell for Nanointerconnection" Micromachines 13, no. 2: 213. https://doi.org/10.3390/mi13020213
APA StyleYu, Z., Shi, Q., Wang, H., Shang, J., Huang, Q., & Fukuda, T. (2022). Controllable Melting and Flow of Ag in Self-Formed Amorphous Carbonaceous Shell for Nanointerconnection. Micromachines, 13(2), 213. https://doi.org/10.3390/mi13020213