An Investigation on CCT and Ra Optimization for Trichromatic White LEDs Using a Dual-Weight-Coefficient-Based Algorithm
Abstract
:1. Introduction
2. Monochromatic Spectra Preparation and Theory of Algorithms
- (1)
- First, we initialize the procedure and load original data, such as the spectra of monochromatic light, step lengths for iteration, error ranges of Ra and CCT, and initial values of , , and ;
- (2)
- Two key problems for CCT optimization are how to adjust CCTtest and how to optimize Ra in the meantime. According to the relationship between CCT and components of different colors, we first set a floating parameter between the initial CCT and CCTtar, which is named CCTm. The relationship between CCTm and CCTtest can be expressed as CCTtest = δ1 + CCTm, where δ1 is the first weight coefficient in our algorithm. To realize CCTm, we only need to modulate the parameter of ;
- (3)
- Before realizing CCTtar, we optimize Ratest by using the bubbling method. Keeping the proportion of and unchanged, we attempt to modulate with a small step to observe the change of Ratest. If the small step helps to increase the value of Ra, we conduct a similar iteration until Ratest reaches the highest value; otherwise, we modulate in the negative direction. The relationship between CCTm and CCTtar can be expressed as CCTtar = δ2 + CCTm, where δ2 is the second weigh coefficient in our algorithm.
- (4)
- When the calculation result meets the required conditions, we export optimized , , and values, the optimized WLED spectra, CCTtest, as well as Ratest.
3. Results and Discussion
3.1. Relationship between CCT, Ra, and Other Parameters
3.2. Comparison between the Proposed Method, Method I, and Method II
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, Z.; Zhao, B.; Gong, Z.; Peng, Y.; Bai, F.; Zheng, H.; Joo, S.W. Color-tunable white LEDs with single chip realized through phosphor pattern and thermal-modulating optical film. Micromachines 2021, 12, 421. [Google Scholar] [CrossRef]
- Zhao, S.; Cai, W.; Wang, H.; Zang, Z. Inorganic lead-free cesium copper chlorine nanocrystal for highly efficient and stable warm white light-emitting diodes. Photonics Res. 2020, 9, 187–192. [Google Scholar] [CrossRef]
- Wang, H.; Xing, Y.H.; Li, J.X.; Tan, J.; Li, Z.T.; Song, C.H.; Li, J.S. Highly efficient lquid-quantum dot/melamine-modified urea-formaldehyde microcapsules for white light-emitting diodes. IEEE Electron Device Lett. 2021, 42, 533–536. [Google Scholar] [CrossRef]
- Chiang, C.H.; Gong, S.J.; Zhan, T.S.; Cheng, K.C.; Chu, S.Y. White light-emitting diodes with high color rendering index and tunable color temperature fabricated using separated phosphor layer structure. IEEE Electron Device Lett. 2016, 37, 898–901. [Google Scholar] [CrossRef]
- Zhong, P.; He, G.; Zhang, M. Spectral optimization of the color temperature tunable white light-emitting diode (LED) cluster consisting of direct-emission blue and red LEDs and a diphosphor conversion LED. Opt. Express 2012, 20, A684–A693. [Google Scholar] [CrossRef]
- Wu, T.; Lin, Y.; Zhu, H.; Guo, Z.; Zheng, L.; Lu, Y.; Shih, T.M.; Chen, Z. Multi-function indoor light sources based on light-emitting diodes—A solution for healthy lighting. Opt. Express 2016, 24, 24401–24412. [Google Scholar] [CrossRef]
- Arellano-Morales, A.; Molina-González, J.; Desirena, H.; Bujdud-Perez, J.M.; Calixto, S. High CRI in phosphor-in-doped glass under near-ultraviolet excitation for warm white light-emitting diode. J. Lumin. 2021, 229, 117684. [Google Scholar] [CrossRef]
- Murad, M.A.; Razi, K.; Jeong, B.R.; Samy, P.M.A.; Muneer, S. Light emitting diodes (LEDs) as agricultural lighting: Impact and its potential on improving physiology, flowering, and secondary metabolites of crops. Sustainability 2021, 13, 1985. [Google Scholar] [CrossRef]
- Nii, K.; Okada, H.; Itoh, S.; Kusaka, T. Characteristics of bilirubin photochemical changes under green light-emitting diodes in humans compared with animal species. Sci. Rep. 2021, 11, 6391. [Google Scholar] [CrossRef]
- Petr, C.; Andrew, B.; Petr, P.; Li, X. Visible light communications: Increasing data rates with polarization division multiplexing. Opt. Lett. 2020, 45, 2977–2980. [Google Scholar]
- Alatawi, A.A.; Holguin-Lerma, J.A.; Kang, C.H.; Shen, C.; Subedi, R.C.; Albadri, A.M.; Allyamani, A.Y.; Ng, T.K.; Ooi, B.S. High-power blue super luminescent diode for high CRI lighting and high-speed visible light communication. Opt. Express 2018, 26, 26355–26364. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Shih, T.M.; Lu, Y.; Gao, Y.; Zhu, L.; Chen, G.; Zhang, J.; Lin, S.; Chen, Z. Studies of scotopic/photopic ratios for color-tunable white light-emitting diodes. IEEE Photonics J. 2013, 5, 8200409. [Google Scholar] [CrossRef]
- Wei, M.; Yang, B.; Lin, Y. Optimization of a spectrally tunable LED daylight simulator. Color Res. Appl. 2017, 42, 419–423. [Google Scholar] [CrossRef]
- Zhu, P.; Zhu, H.; Adhikari, G.C.; Thapa, S. Spectral optimization of white light from hybrid metal halide perovskites. OSA Contin. 2019, 6, 1880–1888. [Google Scholar] [CrossRef]
- Titkov, I.E.; Yadav, A.; Karpov, S.Y.; Sakharov, A.V.; Tsatsulnikov, A.F.; Slight, T.J.; Gorodetsky, A.; Rafailov, E.U. Superior color rendering with a phosphor-converted blue-cyan monolithic light-emitting diode. Laser Photonics Rev. 2016, 10, 1031–1038. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Guan, S.; Sun, X.; Li, X.; Zeng, H.; Xie, Z.; Chen, P.; Zhou, S. Highly efficient carbon dots with reversibly switchable green−red emissions for trichromatic white light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 16005–16014. [Google Scholar] [CrossRef]
- Song, B.M.; Han, B. Spectral power distribution deconvolution scheme for phosphor-converted white light-emitting diode using multiple Gaussian functions. Appl. Opt. 2013, 52, 1016–1024. [Google Scholar] [CrossRef]
- Carli, N.; Sperling, A.; Bizjak, G. Optimization methods for spectral synthesizing of a tuneable colour light source. Light Eng. 2018, 26, 99–108. [Google Scholar] [CrossRef]
- Birgin, E.G.; Martínez, J.M.; Raydan, M. Spectral projected gradient methods: Review and perspectives. J. Stat. Softw. 2016, 60, 1–21. [Google Scholar] [CrossRef]
- Zielonka, A.; Sikora, A.; Wozniak, M.; Wei, W.; Ke, Q.; Bai, Z. Intelligent internet of things system for smart home optimal convection. IEEE Trans. Ind. Inform. 2020, 17, 4308–4317. [Google Scholar] [CrossRef]
- Blanco, J.; García, A.; Morenas, J.D.L. Design and implementation of a wireless sensor and actuator network to support the intelligent control of efficient energy usage. Sensors 2018, 18, 1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiang, Y.; Yu, Y.; Chen, G.; Fang, J. A flux-free method for synthesis of Ce3+-doped YAG phosphor for white LEDs. Mater. Res. Bull. 2016, 74, 353–359. [Google Scholar] [CrossRef]
- Pu, C.; Peng, X. To battle surface traps on CdSe/CdS core/shell nanocrystals: Shell isolation versus surface treatment. J. Am. Chem. Soc. 2016, 138, 8134–8142. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Xiao, X.; Wang, K.; Wang, R.; Xie, B.; Chiang, K.S. Optimization of illumination performance of trichromatic white light-emitting diode and characterization of its modulation bandwidth for communication applications. IEEE Photonics J. 2018, 10, 8201511. [Google Scholar] [CrossRef]
- Erdem, T.; Nizamoglu, S.; Sun, X.W.; Demir, H.V. A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores. Opt. Express 2010, 18, 340–347. [Google Scholar] [CrossRef] [Green Version]
CCTtar (K) | CCTtest (K) | Ra | |||||
---|---|---|---|---|---|---|---|
3000 | 2924 | 95.1 | 200 | 200 | 0.11 | 0.30 | 0.47 |
4000 | 4013 | 96.1 | 400 | 300 | 0.33 | 0.30 | 0.30 |
5000 | 5011 | 94.2 | 1000 | 300 | 0.48 | 0.30 | 0.23 |
6000 | 6036 | 92.4 | 1600 | 300 | 0.60 | 0.30 | 0.20 |
7000 | 7018 | 90.8 | 2200 | 300 | 0.69 | 0.30 | 0.18 |
8000 | 8044 | 89.7 | 3000 | 200 | 0.75 | 0.30 | 0.15 |
CCTtar (K) | CCTtest (K) | Ra | |||
---|---|---|---|---|---|
3000 | 3059 | 95.3 | 0.12 | 0.30 | 0.46 |
4000 | 4013 | 96.1 | 0.33 | 0.30 | 0.30 |
5000 | 4908 | 94.3 | 0.46 | 0.30 | 0.23 |
6000 | 5927 | 92.7 | 0.57 | 0.30 | 0.18 |
7000 | 7011 | 90.8 | 0.69 | 0.30 | 0.17 |
8000 | 7950 | 89.8 | 0.72 | 0.30 | 0.13 |
CCTtar (K) | CCTtest (K) | Ra | |||
---|---|---|---|---|---|
3000 | 3013 | 95.5 | 0.13 | 0.30 | 0.47 |
4000 | 4041 | 96.0 | 0.34 | 0.30 | 0.30 |
5000 | 5007 | 94.1 | 0.49 | 0.30 | 0.24 |
6000 | 6047 | 91.8 | 0.62 | 0.30 | 0.21 |
7000 | 6924 | 87.2 | 0.58 | 0.30 | 0.07 |
8000 | 7917 | 85.6 | 0.65 | 0.30 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Li, Y.; Li, B.; Wang, G. An Investigation on CCT and Ra Optimization for Trichromatic White LEDs Using a Dual-Weight-Coefficient-Based Algorithm. Micromachines 2022, 13, 276. https://doi.org/10.3390/mi13020276
Xiao H, Li Y, Li B, Wang G. An Investigation on CCT and Ra Optimization for Trichromatic White LEDs Using a Dual-Weight-Coefficient-Based Algorithm. Micromachines. 2022; 13(2):276. https://doi.org/10.3390/mi13020276
Chicago/Turabian StyleXiao, Hua, Yan Li, Binghui Li, and Guancheng Wang. 2022. "An Investigation on CCT and Ra Optimization for Trichromatic White LEDs Using a Dual-Weight-Coefficient-Based Algorithm" Micromachines 13, no. 2: 276. https://doi.org/10.3390/mi13020276
APA StyleXiao, H., Li, Y., Li, B., & Wang, G. (2022). An Investigation on CCT and Ra Optimization for Trichromatic White LEDs Using a Dual-Weight-Coefficient-Based Algorithm. Micromachines, 13(2), 276. https://doi.org/10.3390/mi13020276