Flexible CdSe/ZnS Quantum-Dot Light-Emitting Diodes with Higher Efficiency than Rigid Devices
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jeong, H.; Kim, H.M.; Kim, J.; Jeong, W.; Jang, J. Highly Robust, Flexible Top-Emission Organic Light-Emitting Diode Exhibiting Stable Performance under Infolding of Curvature Radius of 0.32 mm. Adv. Eng. Mater. 2021, 23, 2100045. [Google Scholar] [CrossRef]
- Sharma, G.; Hashmi, S.Z.; Kumar, U.; Kattayat, S.; Ayaz Ahmad, M.; Kumar, S.; Dalela, S.; Alvi, P.A. Optical and electronic characteristics of ITO/NPB/Alq3:DCJTB/Alq3/Ag heterostructure based organic light emitting diode. Optik 2020, 223, 165572. [Google Scholar] [CrossRef]
- Sharma, G.; Kattayat, S.; Faheem Naqvi, S.; Hashmi, S.Z.; Alvi, P.A. Role of MEH:PPV polymer in single layer OLEDs with its optoelectronic characteristics. Mater. Today Proc. 2019, 42, 1678–1681. [Google Scholar] [CrossRef]
- Sonoda, T.; Murashige, S.; Tanaka, K.; Takase, K.; Katoh, H.; Kataoka, Y.; Usui, T.; Okada, T.; Shimizu, T. 30-inch 4K Rollable AM-OLED Display. In Proceedings of the AM-FPD 2020—27th International Workshop on Active-Matrix Flatpanel Displays and Devices: TFT Technologies and FPD Materials, Kyoto, Japan, 1–4 September 2020; pp. 35–38. [Google Scholar]
- Jansson, E.; Korhonen, A.; Hietala, M.; Kololuoma, T. Development of a full roll-to-roll manufacturing process of through-substrate vias with stretchable substrates enabling double-sided wearable electronics. Int. J. Adv. Manuf. Technol. 2020, 111, 3017–3027. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, T.; Duan, L. Emerging Self-Emissive Technologies for Flexible Displays. Adv. Mater. 2020, 32, 1902391. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, D.S.; Jin, S.W.; Lee, H.; Jeong, Y.R.; You, I.; Zi, G.; Ha, J.S. Stretchable array of CdSe/ZnS quantum-dot light emitting diodes for visual display of bio-signals. Chem. Eng. J. 2021, 427, 130858. [Google Scholar] [CrossRef]
- Choi, M.K.; Yang, J.; Hyeon, T.; Kim, D.-H. Flexible quantum dot light-emitting diodes for next-generation displays. NPJ Flex. Electron. 2018, 2, 10. [Google Scholar] [CrossRef]
- Huang, T.E.; Chen, H.J.; Chen, C.H.; Lin, Y.H.; Chen, S.Z.; Wen, S.W.; Jou, J.H. Organic lighting devices are plausibly more vulnerable to oxygen than moisture. Org. Electron. 2021, 99, 106333. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Y.; Sun, X.W.; Zhang, S.; Chen, S. Beyond OLED: Efficient Quantum Dot Light-Emitting Diodes for Display and Lighting Application. Chem. Rec. 2019, 19, 1729–1752. [Google Scholar] [CrossRef]
- Wood, V.; Bulović, V. Colloidal quantum dot light-emitting devices. Nano Rev. 2010, 1, 5202. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Carroll, G.M.; Neale, N.R.; Beard, M.C. Infrared quantum dots: Progress, challenges, and opportunities. ACS Nano 2019, 13, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Dabbousi, B.O.; Rodriguez-Viejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475. [Google Scholar] [CrossRef]
- Karimullin, K.R.; Arzhanov, A.I.; Eremchev, I.Y.; Kulnitskiy, B.A.; Surovtsev, N.V.; Naumov, A.V. Combined photon-echo, luminescence and Raman spectroscopies of layered ensembles of colloidal quantum dots. Laser Phys. 2019, 29, 124009. [Google Scholar] [CrossRef]
- Lee, H. Semi-analytical Numerical Analysis of the Core-size and Electric-field Intensity Dependency of the Light Emission Wavelength of CdSe/ZnS Quantum Dots. J. Semicond. Disp. Technol. 2021, 20, 11–17. [Google Scholar]
- Cho, H.; Yun, C.; Park, J.W.; Yoo, S. Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes. Org. Electron. 2009, 10, 1163–1169. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.-L. Design of dielectric/metal/dielectric transparent electrodes for flexible electronics. J. Photonics Energy 2012, 2, 021215. [Google Scholar] [CrossRef]
- Banzai, K.; Naka, S.; Okada, H. MoO3/Ag/MoO3anode for organic light-emitting diodes and its carrier injection property. Jpn. J. Appl. Phys. 2015, 54, 054101. [Google Scholar] [CrossRef]
- Goetz, S.; Wibowo, R.A.; Bauch, M.; Bansal, N.; Ligorio, G.; List-Kratochvil, E.; Linke, C.; Franzke, E.; Winkler, J.; Valtiner, M.; et al. Fast sputter deposition of MoOX/metal/MoOX transparent electrodes on glass and PET substrates. J. Mater. Sci. 2021, 56, 9047–9064. [Google Scholar] [CrossRef]
- Ji, C.; Liu, D.; Zhang, C.; Jay Guo, L. Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%. Nat. Commun. 2020, 11, 3367. [Google Scholar] [CrossRef]
- Kim, H.M.; Kim, J.; Lee, J.; Jang, J. Inverted Quantum-Dot Light Emitting Diode Using Solution Processed p-Type WOX Doped PEDOT:PSS and Li Doped ZnO Charge Generation Layer. ACS Appl. Mater. Interfaces 2015, 7, 24592–24600. [Google Scholar] [CrossRef]
- Hasnidawani, J.N.; Azlina, H.N.; Norita, H.; Bonnia, N.N.; Ratim, S.; Ali, E.S. Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chem. 2016, 19, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.J.; Lee, H.N. Improving the charge balance and performance of CdSe/ZnS quantum-dot light-emitting diodes with a sputtered zinc-tin-oxide electron-transport layer and a thermally evaporated tungsten-oxide charge-restricting layer. Jpn. J. Appl. Phys. 2019, 58, 106502. [Google Scholar] [CrossRef]
- Lee, G.J.; Lee, Y.P.; Jung, B.Y.; Jung, S.G.; Hwangbo, C.K.; Kim, J.H.; Yoon, C.S. Microstructural and nonlinear optical properties of thin silver films near the optical percolation threshold. J. Korean Phys. Soc. 2007, 51, 1555–1559. [Google Scholar] [CrossRef]
- Cho, H.-J.; Lee, H.-N. OLED Light Outcoupling Enhancement by Extracting Surface Plasmon Polariton Energy. Mol. Cryst. Liq. Cryst. 2014, 601, 159–164. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Duong, A.T.; Lee, S. Investigation the effect of different surface ligand treatments on luminescence and performance of quantum dot LEDs. J. Mater. Res. 2021, 36, 3309–3316. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Nguyen, N.D.; Lee, S. Application of solution-processed metal oxide layers as charge transport layers for CdSe/ZnS quantum-dot LEDs. Nanotechnology 2013, 24, 115201. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Ryu, S.Y.; Duong, A.T.; Lee, S. Effects of 1,2-ethanedithiol concentration on performance improvement of quantum-dot LEDs. RSC Adv. 2019, 9, 38464–38468. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Ryu, S.Y.; Duong, A.T.; Lee, S. Impact of 1,2-ethanedithiol treatment on luminescence and charge-transport characteristics in colloidal quantum-dot LEDs. Nanotechnology 2019, 30, 505202. [Google Scholar] [CrossRef]
- Chen, J.; Ma, D. Investigation of charge-carrier injection characteristics in NPB/Alq3 heterojunction devices. Chem. Phys. 2006, 325, 225–230. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, J.; Lin, J.; Hu, X.; Wang, C.; Chen, E.; Sun, J.; Yan, Q.; Guo, T. Quantum-dot array with a random rough interface encapsulated by atomic layer deposition. Opt. Lett. 2022, 47, 166–169. [Google Scholar] [CrossRef]
Oxide Thickness (nm) | Maximum Current Efficiency (cd/A) | |
---|---|---|
WOX/Ag/WOX | MoOX/Ag/MoOX | |
10 | 19.4 | 30.3 |
20 | 16.3 | 24.6 |
30 | 12.3 | 17.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kim, D.; Kwon, O.; Lee, H. Flexible CdSe/ZnS Quantum-Dot Light-Emitting Diodes with Higher Efficiency than Rigid Devices. Micromachines 2022, 13, 269. https://doi.org/10.3390/mi13020269
Kim M, Kim D, Kwon O, Lee H. Flexible CdSe/ZnS Quantum-Dot Light-Emitting Diodes with Higher Efficiency than Rigid Devices. Micromachines. 2022; 13(2):269. https://doi.org/10.3390/mi13020269
Chicago/Turabian StyleKim, Mijin, Dongjin Kim, Ohun Kwon, and Honyeon Lee. 2022. "Flexible CdSe/ZnS Quantum-Dot Light-Emitting Diodes with Higher Efficiency than Rigid Devices" Micromachines 13, no. 2: 269. https://doi.org/10.3390/mi13020269
APA StyleKim, M., Kim, D., Kwon, O., & Lee, H. (2022). Flexible CdSe/ZnS Quantum-Dot Light-Emitting Diodes with Higher Efficiency than Rigid Devices. Micromachines, 13(2), 269. https://doi.org/10.3390/mi13020269