Particle-Induced Electrostatic Repulsion within an Electric Curtain Operating below the Paschen Limit
Abstract
:1. Introduction
1.1. Electric Curtain Background
1.2. Dielectric Electrokinetics
2. Materials and Methods
2.1. AFM Experiments
2.2. Particle Interactions with the Electric Curtain
2.3. Numerical Simulations
3. Results and Discussion
3.1. AFM Experiments
3.2. Particle Interactions with the Electric Curtain
3.3. Numerical Simulations
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masuda, S.; Fujibayashi, K.; Ishida, K.; Inada, H. Confinement and transportation of charged aerosol clouds via electric curtain. Electr. Eng. Jpn. 1972, 92, 43–52. [Google Scholar] [CrossRef]
- Masuda, S.; Washizu, M.; Iwadare, M. Separation of small particles suspended in liquid by nonuniform traveling field. IEEE Trans. Ind. Appl. 1987, 23, 474–480. [Google Scholar] [CrossRef]
- Atten, P.; Pang, H.L.; Reboud, J.-L. Study of dust removal by standing-wave electric curtain for application to solar cells on mars. IEEE Trans. Ind. Appl. 2009, 45, 75–86. [Google Scholar] [CrossRef]
- Chesnutt, J.K.W.; Marshall, J.S. Simulation of particle separation on an inclined electric curtain. IEEE Trans. Ind. Appl. 2013, 49, 1104–1112. [Google Scholar] [CrossRef]
- Hemstreet, J.M. Velocity distribution on the Masuda panel. J. Electrost. 1985, 17, 245–254. [Google Scholar] [CrossRef]
- Melcher, J.R.; Warren, E.P.; Kotwal, R.H. Theory for finite-phase traveling-wave boundary-guided transport of triboelectrified particles. IEEE Trans. Ind. Appl. 1989, 25, 949–955. [Google Scholar] [CrossRef]
- Myers, O.D.; Wu, J.; Marshall, J.S. Nonlinear dynamics of particles excited by an electric curtain. J. Appl. Phys. 2013, 114, 154907. [Google Scholar] [CrossRef] [Green Version]
- Calle, C.I.; Buhler, C.R.; Johansen, M.R.; Hogue, M.D.; Snyder, S.J. Active dust control and mitigation technology for lunar and Martian exploration. Acta Astronaut. 2011, 69, 1082–1088. [Google Scholar] [CrossRef]
- Calle, C.I.; Buhler, C.R.; McFall, J.L.; Snyder, S.J. Particle removal by electrostatic and dielectrophoretic forces for dust control during lunar exploration missions. J. Electrost. 2009, 67, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Calle, C.I.; Mackey, P.J.; Hogue, M.D.; Johansen, M.R.; Yim, H.; Delaune, P.B.; Clements, J.S. Electrodynamic dust shields on the international space station: Exposure to the space environment. J. Electrost. 2013, 71, 257–259. [Google Scholar] [CrossRef] [Green Version]
- Desai, A.; Lee, S.W.; Tai, Y.C. A MEMS electrostatic particle transportation system. Sens. Actuators A Phys. 1999, 73, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Hemstreet, J.M. Three-phase velocity distribution of lycopodium particles on the Masuda panel. J. Electrost. 1992, 27, 237–247. [Google Scholar] [CrossRef]
- Kawamoto, H. Some techniques on electrostatic separation of particle size utilizing electrostatic traveling-wave field. J. Electrost. 2008, 66, 220–228. [Google Scholar] [CrossRef]
- Moesner, F.M.; Higuchi, T. Traveling electric field conveyor for contactless manipulation of microparts. In Proceedings of the Industry Applications Conference, Thirty-Second IAS Annual Meeting, IAS′97, Conference Record of the 1997 IEEE, New Orleans, LA, USA, 5–9 October 1997; Volume 2003, pp. 2004–2011. [Google Scholar]
- Schmidlin, F.W. A new nonlevitated mode of traveling-wave toner transport. IEEE Trans. Ind. Appl. 1991, 27, 480–487. [Google Scholar] [CrossRef]
- Xing, X.; Yang, J.M.; Tai, Y.C.; Ho, C.M. Micromachined membrane particle filters. Sens. Actuators A Phys. 1999, 73, 184–191. [Google Scholar]
- Zhao, Y.; Chung, S.K.; Yi, U.-C.; Cho, S.K. Droplet manipulation and microparticle sampling on perforated microfilter membranes. J. Micromech. Microeng. 2008, 18, 025030. [Google Scholar] [CrossRef]
- Gartstein, Y.N.; Shaw, J.G. Many-particle effects in travelling electrostatic wave transport. J. Phys. D Appl. Phys. 1999, 32, 2176–2180. [Google Scholar] [CrossRef]
- Liu, G.; Marshall, J.S. Particle transport by standing waves on an electric curtain. J. Electrost. 2010, 68, 289–298. [Google Scholar] [CrossRef]
- Liu, G.Q.; Marshall, J.S. Effect of particle adhesion and interactions on motion by traveling waves on an electric curtain. J. Electrost. 2010, 68, 179–189. [Google Scholar] [CrossRef]
- Schmidlin, F.W. Modes of traveling-wave particle-transport and their applications. J. Electrost. 1995, 34, 225–244. [Google Scholar] [CrossRef]
- Sun, Q.; Yang, N.; Cai, X.; Hu, G. Mechanism of dust removal by a standing wave electric curtain. Sci. China Phys. Mech. Astron. 2012, 55, 1018–1025. [Google Scholar] [CrossRef]
- Lindley, K.S.; Rowson, N.A. Charging mechanisms for particles prior to electrostatic separation. Magn. Electr. Sep. 1997, 8, 101–113. [Google Scholar] [CrossRef]
- Castellanos, A.; Ramos, A.; Gonzalez, A.; Green, N.G.; Morgan, H. Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws. J. Phys. D Appl. Phys. 2003, 36, 2584–2597. [Google Scholar] [CrossRef]
- Morgan, H.; Green, N.G. AC Electrokinetics: Colloids and Nanoparticles; Research Studies Press: Philadelphia, PA, USA, 2003. [Google Scholar]
- Weiss, L.C. Electrodynamic behavior of textile fibers. Text. Res. J. 1982, 52, 59–65. [Google Scholar] [CrossRef]
- Masuda, S.; Matsumoto, Y. Theoretical characteristics of standing-wave electric curtains. Electr. Eng. Jpn. 1973, 93, 71–77. [Google Scholar] [CrossRef]
- Pethig, R. Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 2010, 4, 022811. [Google Scholar] [CrossRef] [Green Version]
- Wood, N.R.; Wolsiefer, A.I.; Cohn, R.W.; Williams, S.J. Dielectrophoretic trapping of nanoparticles with an electrokinetic nanoprobe. Electrophoresis 2013, 34, 1922–1930. [Google Scholar] [CrossRef]
- Khoshmanesh, K.; Nahavandi, S.; Baratchi, S.; Mitchell, A.; Kalantar-zadeh, K. Dielectrophoretic platforms for bio-microfluidic systems. Biosens. Bioelectron. 2011, 26, 1800–1814. [Google Scholar] [CrossRef]
- Jones, T.B. Electromechanics of Particles; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1995. [Google Scholar]
- Gimsa, J. A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochemistry 2001, 54, 23–31. [Google Scholar] [CrossRef]
- Washizu, M.; Jones, T.B. Multipolar dielectrophoretic force calculation. J. Electrost. 1994, 33, 187–198. [Google Scholar] [CrossRef]
- Washizu, M.; Jones, T.B.; Kaler, K. Higher-order dielectrophoretic effects—Levitation at a field null. Biochim. Biophys. Acta 1993, 1158, 40–46. [Google Scholar] [CrossRef]
- Voldman, J.; Braff, R.A.; Toner, M.; Gray, M.L.; Schmidt, M.A. Holding forces of single-particle dielectrophoretic traps. Biophys. J. 2001, 80, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Pohl, H.A.; Pethig, R. Dielectric measurements using non-uniform electric field (dielectrophoretic) effects. J. Phys. E Sci. Instrum. 1977, 10, 190–193. [Google Scholar] [CrossRef]
- Park, H.; LeBrun, T.W. Optical trap loading of dielectric microparticles in air. J. Vis. Exp. 2017, 120, 54862. [Google Scholar] [CrossRef]
- Moscg, W.; Arora, R. High Voltage and Electrical Insulation Engineering; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
- Osmokrovic, P.; Krivokapic, I.; Krstic, S. Mechanism of electrical breakdown left of Paschen minimum. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 77–81. [Google Scholar] [CrossRef]
- Lowell, J. Constraints on Contact Charging of Insulators. 1. Spatial Localization of Insulator States. J. Phys. D Appl. Phys. 1986, 19, 95–104. [Google Scholar] [CrossRef]
- Lowell, J. Constraints on Contact Charging of Insulators. 2. Energy Constraints. J. Phys. D Appl. Phys. 1986, 19, 105–113. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, S.J.; Schneider, J.D.; King, B.C.; Green, N.G. Particle-Induced Electrostatic Repulsion within an Electric Curtain Operating below the Paschen Limit. Micromachines 2022, 13, 288. https://doi.org/10.3390/mi13020288
Williams SJ, Schneider JD, King BC, Green NG. Particle-Induced Electrostatic Repulsion within an Electric Curtain Operating below the Paschen Limit. Micromachines. 2022; 13(2):288. https://doi.org/10.3390/mi13020288
Chicago/Turabian StyleWilliams, Stuart J., Joseph D. Schneider, Benjamin C. King, and Nicolas G. Green. 2022. "Particle-Induced Electrostatic Repulsion within an Electric Curtain Operating below the Paschen Limit" Micromachines 13, no. 2: 288. https://doi.org/10.3390/mi13020288
APA StyleWilliams, S. J., Schneider, J. D., King, B. C., & Green, N. G. (2022). Particle-Induced Electrostatic Repulsion within an Electric Curtain Operating below the Paschen Limit. Micromachines, 13(2), 288. https://doi.org/10.3390/mi13020288