Editorial for the Special Issue on Micromachines for Dielectrophoresis
Conflicts of Interest
References
- Kale, A.; Malekanfard, A.; Xuan, X. Analytical Guidelines for Designing Curvature-induced dielectrophoretic particle manipulation systems. Micromachines 2020, 11, 707. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Malekanfard, A.; Beladi-Behbahani, S.; Zu, W.; Kale, A.; Tzeng, T.R.; Wang, Y.N.; Xuan, X. Passive dielectrophoretic focusing of particles and cells in ratchet microchannels. Micromachines 2020, 11, 451. [Google Scholar] [CrossRef] [PubMed]
- Hölzel, R.; Pethig, R. Protein dielectrophoresis: I. status of experiments and an empirical theory. Micromachines 2020, 11, 533. [Google Scholar] [CrossRef] [PubMed]
- Keck, D.; Stuart, C.; Duncan, J.; Gullette, E.; Martinez-Duarte, R. Highly localized enrichment of Trypanosoma brucei parasites using dielectrophoresis. Micromachines 2020, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Jiang, Z.; Li, L.; Gilchrist, J.F.; Ou-Yang, H.D. Frequency response of induced-charge electrophoretic metallic janus particles. Micromachines 2020, 11, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiriet, P.E.; Pezoldt, J.; Gambardella, G.; Keim, K.; Deplancke, B.; Guiducci, C. Selective retrieval of individual cells from microfluidic arrays combining dielectrophoretic force and directed hydrodynamic flow. Micromachines 2020, 11, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ettehad, H.M.; Zarrin, P.S.; Hölzel, R.; Wenger, C. Dielectrophoretic immobilization of yeast cells using CMOS integrated microfluidics. Micromachines 2020, 11, 501. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Huang, Z.; Lai, S.; He, W.; Wang, L.; Chi, F.; Zhang, C.; Shui, L.; Zhou, G. Driving waveform design of Electrowetting Displays Based on an exponentional function for a stable grayscale and a short driving time. Micromachines 2020, 11, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.; Yi, Z.; Shen, S.; Huang, Z.; Liu, L.; Zhang, T.; Li, W.; Wang, L.; Shui, L.; Zhang, C.; et al. Driving waveform design of electrophoretic display based on optimized particle activation for a rapid response speed. Micromachines 2020, 11, 498. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, B.G.; Lai, N.; Clague, D.S. High-sensitivity in dielectrophoresis separations. Micromachines 2020, 11, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giesler, J.; Pesch, G.R.; Weirauch, L.; Schmidt, M.P.; Thöming, J.; Baune, M. Polarizability-dependent sorting of microparticles using continuous-flow dielectrophoretic chromatography with a frequency modulation method. Micromachines 2020, 11, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Duarte, R. Editorial for the Special Issue on Micromachines for Dielectrophoresis. Micromachines 2022, 13, 417. https://doi.org/10.3390/mi13030417
Martinez-Duarte R. Editorial for the Special Issue on Micromachines for Dielectrophoresis. Micromachines. 2022; 13(3):417. https://doi.org/10.3390/mi13030417
Chicago/Turabian StyleMartinez-Duarte, Rodrigo. 2022. "Editorial for the Special Issue on Micromachines for Dielectrophoresis" Micromachines 13, no. 3: 417. https://doi.org/10.3390/mi13030417
APA StyleMartinez-Duarte, R. (2022). Editorial for the Special Issue on Micromachines for Dielectrophoresis. Micromachines, 13(3), 417. https://doi.org/10.3390/mi13030417