Power Losses Models for Magnetic Cores: A Review
Abstract
:1. Introduction
2. Ferromagnetic Alloys
3. Losses in Magnetic Components
4. General Core Losses Models
- Relative permeability.
- Magnetic saturation point.
- Temperature operation range.
- AC excitation frequency and amplitude.
- Voltages’ waveform.
- DC bias.
- Magnetization process.
- Peak-to-peak value of magnetic flux density.
4.1. Mathematical Models
4.2. Time-Domain Approximation Models
4.3. Loss Separation Models
4.4. Empirical Models
Empirical Core Losses Proposals
5. Simulation Software
6. Magnetic Components Design Process
7. Magnetic Devices and Miniaturization
8. Discussion
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Core loss | Hysteresis or static loss | ||
Eddy current loss | Anomalous or residual loss | ||
Hysteresis coefficient | Eddy currents coefficient | ||
Anomalous coefficient | f | Fundamental frequency | |
B | Magnetic flux density | Angle between and | |
Magnetic flux density of the nth harmonic | Magnetic field of the nth harmonic | ||
Magnetic induction peak | x | Steinmetz coefficient | |
d | Lamination thickness | Electrical resistivity | |
A | Cross-sectional area lamination | Equivalent frequency | |
Anhysteretic magnetization | Inter-domain coupling | ||
Magnetic induction peak to peak | Core loss magnetization rate | ||
Magnetic induction exponent | Frequency exponent | ||
Magnetizing field direction | Fundamental frequency | ||
Sinusoidal waveform phase angle | T | Waveform period | |
D | Duty ratio | N | Number of turns |
Waveform coefficient | , | Voltage | |
t | Time | Zero-voltage period duration | |
U | DC constant voltage | Length of zero-voltage period | |
Core temperature with smallest losses | Core temperature | ||
M | Total magnetization | H | Magnetic field |
Effective magnetic field | Free-space permeability | ||
Irreversible magnetization | Reversible magnetization | ||
Effective core area | Losses temperature coefficient | ||
Instantaneous value of core loss magnetization rate | Magnetic objects statistical distribution | ||
G | Eddy current dimensionless coefficient | Anhysteretic magnetization shape parameter | |
Instantaneous magnetization | Saturation magnetization | ||
Magnetic moment | Instantaneous magnetic field | ||
Rectangular waveform power losses | c | Reversibility coefficient | |
, , , , | |||
a, ,, , , | Material parameters | ||
, , , k |
References
- Lee, H.; Jung, S.; Huh, Y.; Lee, J.; Bae, C.; Kim, S.J. An implantable wireless charger system with ×8.91 Increased charging power using smartphone and relay coil. In Proceedings of the IEEE Wireless Power Transfer Conference (WPTC), San Diego, CA, USA, 1–4 June 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Yu, W.; Hua, W.; Zhang, Z. High-frequency core loss analysis of high-speed flux-switching permanent magnet machines. Electronics 2021, 10, 1076. [Google Scholar] [CrossRef]
- Pérez, E.; Espiñeira, P.; Ferreiro, A. Instrumentación Electrónica; Acceso Rápido; Marcombo: Barcelona, Spain, 1995. [Google Scholar]
- Chitode, J.; Bakshi, U. Power Devices and Machines; Technical Publications: Maharashtra, India, 2009. [Google Scholar]
- López-Fernández, X.; Ertan, H.; Turowski, J. Transformers: Analysis, Design, and Measurement; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Muttaqi, K.M.; Islam, M.R.; Sutanto, D. Future power distribution grids: Integration of renewable energy, energy storage, electric vehicles, superconductor, and magnetic bus. IEEE Trans. Appl. Supercond. 2019, 29, 3800305. [Google Scholar] [CrossRef] [Green Version]
- Phan, H.P. Implanted flexible electronics: Set device lifetime with smart nanomaterials. Micromachines 2021, 12, 157. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.; Lahiri, A.; Baldzhiev, V.; Trych-Wildner, A. Suggested research trends in the area of micro-EDM—Study of some parameters affecting micro-EDM. Micromachines 2021, 12, 1184. [Google Scholar] [CrossRef]
- Kozai, T.D.Y. The history and horizons of microscale neural interfaces. Micromachines 2018, 9, 445. [Google Scholar] [CrossRef] [Green Version]
- Rashid, M.H. Power Electronics Handbook; Elsevier: Amsterdam, The Netherlands, 2018; p. 1510. [Google Scholar] [CrossRef]
- Matallana, A.; Ibarra, E.; López, I.; Andreu, J.; Garate, J.; Jordà, X.; Rebollo, J. Power module electronics in HEV/EV applications: New trends in wide-bandgap semiconductor technologies and design aspects. Renew. Sustain. Energy Rev. 2019, 113, 109264. [Google Scholar] [CrossRef]
- Hanson, A.J.; Perreault, D.J. Modeling the magnetic behavior of n-winding components: Approaches for unshackling switching superheroes. IEEE Power Electron. Mag. 2020, 7, 35–45. [Google Scholar] [CrossRef]
- Bahmani, A. Core loss evaluation of high-frequency transformers in high-power DC-DC converters. In Proceedings of the Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 10–12 April 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Rahim, N.A.; Selvaraj, J. Recent progress and development on power DC-DC converter topology, control, design and applications: A review. Renew. Sustain. Energy Rev. 2018, 81, 205–230. [Google Scholar] [CrossRef]
- Silveyra, J.M.; Ferrara, E.; Huber, D.L.; Monson, T.C. Soft magnetic materials for a sustainable and electrified world. Science 2018, 362, eaao0195. [Google Scholar] [CrossRef] [Green Version]
- Zurek, S. Characterisation of Soft Magnetic Materials under Rotational Magnetisation; CRC Press: Boca Raton, FL, USA, 2017; p. 568. [Google Scholar]
- Cullity, B.; Graham, C. Soft magnetic materials. In Introduction to Magnetic Materials; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; Chapter 13; pp. 439–476. [Google Scholar] [CrossRef]
- Krishnan, K.M. Fundamentals and Applications of Magnetic Materials; Oxford University Press: Oxford, UK, 2016; p. 816. [Google Scholar] [CrossRef]
- Islam, M.R.; Rahman, M.A.; Sarker, P.C.; Muttaqi, K.M.; Sutanto, D. Investigation of the magnetic response of a nanocrystalline high-frequency magnetic link with multi-input excitations. IEEE Trans. Appl. Supercond. 2019, 29, 0602205. [Google Scholar] [CrossRef]
- Dobrzanski, L.A.; Drak, M.; Zieboqicz, B. Materials with specific magnetic properties. J. Achiev. Mater. Manuf. Eng. 2006, 17, 37. [Google Scholar]
- Duppalli, V.S. Design Methodology for a High-Frequency Transformer in an Isolating DC-DC Converter. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2018. [Google Scholar]
- Liu, X.; Wang, Y.; Zhu, J.; Guo, Y.; Lei, G.; Liu, C. Calculation of core loss and copper loss in amorphous/nanocrystalline core-based high-frequency transformer. AIP Adv. 2016, 6, 055927. [Google Scholar] [CrossRef] [Green Version]
- Balci, S.; Sefa, I.; Bayram, M.B. Core material investigation of medium-frequency power transformers. In Proceedings of the 2014 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, 21–24 September 2014; pp. 861–866. [Google Scholar]
- de Sevilla Galán, J.F. Mejora del Cálculo de las Pérdidas por el Efecto Proximidad en alta Frecuencia Para Devanados de Hilos de Litz. Available online: https://oa.upm.es/56807/1/TFG_JAVIER_FERNANDEZ_DE_SEVILLA_GALAN.pdf (accessed on 24 February 2022).
- Herbert, E. User-Friendly Data for Magnetic Core Loss Calculations. Technical Report 4. 2008. Available online: https://www.psma.com/coreloss/eh1.pdf (accessed on 24 February 2022).
- Sullivan, C.R.; Harris, J.H.; Herbert, E. Testing Core Loss for Rectangular Waveforms the Power Sources Manufacturers Association. Technical Report 973. 2010. Available online: https://www.psma.com/coreloss/phase2.pdf (accessed on 24 February 2022).
- Tacca, H.; Sullivan, C. Extended Steinmetz Equation; Report of Posdoctoral Research; Thayer School of Engineering: Hanover, NH, USA, 2002. [Google Scholar]
- Ulaby, F.T. Fundamentos de Aplicaciones en Electromagnetismo; Pearson: London, UK, 2007. [Google Scholar]
- Cheng, D. Fundamentos de Electromagnetismo para Ingeniería. Mexicana, A., Ed.; 1997; Available online: https://www.academia.edu/36682331/Fundamentos_de_Electromagnetismo_para_Ingenieria_David_K_Cheng (accessed on 24 February 2022).
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Goldman, A. Handbook of Modern Ferromagnetic Materials; Springer: Boston, MA, USA, 1999. [Google Scholar] [CrossRef]
- Gupta, K.; Gupta, N. Magnetic Materials: Types and Applications. In Advanced Electrical and Electronics Materials; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; Chapter 12; pp. 423–448. [Google Scholar] [CrossRef]
- Hitachi. Nanocrystalline Material Properties; Hitachi: Tokyo, Japan, 2019. [Google Scholar]
- County Council, K.; Richardson, A. Silver Wire Ring. 2017. [image/JPEG]. Available online: https://www.academia.edu/2306387/With_Dickinson_T_M_and_Richardson_A_Early_Anglo_Saxon_Eastry_Archaeological_Evidence_for_the_Beginnings_of_a_District_Centre_in_the_Kingdom_of_Kent_Anglo_Saxon_Studies_in_Archaeology_and_History_17 (accessed on 24 February 2022).
- Alisdojo. Detail of an Enamelled Litz Wire. 2011. [image/JPEG]. Available online: https://commons.wikimedia.org/wiki/File:Enamelled_litz_copper_wire.JPG (accessed on 24 February 2022).
- Magnetics. Powder Cores Properties; Magnetics: Pittsburgh, PA, USA, 2019. [Google Scholar]
- Laboratory, N.E.T. FINEMET Properties. 2018. Available online: https://www.hitachi-metals.co.jp/e/products/elec/tel/p02_21.html#:~:text=FINEMET%C2%AE%20has%20high%20saturation,and%20electronics%20devices%20as%20well (accessed on 24 February 2022).
- CATECH®. Amorphous and Nanocrystalline Core; CATECH: Singapore, 2022. [Google Scholar]
- Soon, H. Wire. 2017. [image/JPEG]. Available online: https://iopscience.iop.org/article/10.1088/1742-6596/871/1/012098/pdf (accessed on 24 February 2022).
- Aluminium Wire, 16 mm2. 2012. [image/JPEG]. Available online: https://ceb.lk/front_img/specifications/1540801489P.V_.C_._INSULATED_ALUMINIUM_SERVICE_MAIN_WIRE-FINISHED_PRODUCT_.pdf (accessed on 24 February 2022).
- County Council, K.; Richardson, A. Length of Gold Wire, Ringlemere. 2017. [image/JPEG]. Available online: https://www.sachsensymposion.org/wp-content/uploads/2012/04/68th-International-Sachsensymposion-Canterbury.pdf (accessed on 24 February 2022).
- SpinningSpark. Transformer Core. 2012. [image/JPEG]. Available online: https://commons.wikimedia.org/wiki/File:Transformer_winding_formats.jpg (accessed on 24 February 2022).
- TheDigitalArtist. coil-gd137ed32f-1920. 2015. [image/JPEG]. Available online: https://plato.stanford.edu/entries/digital-art/ (accessed on 24 February 2022).
- Fiorillo, F.; Bertotti, G.; Appino, C.; Pasquale, M. Soft magnetic materials. In Wiley Encyclopedia of Electrical and Electronics Engineering; American Cancer Society: Atlanta, GA, USA, 2016; pp. 1–42. [Google Scholar] [CrossRef]
- Aguglia, D.; Neuhaus, M. Laminated magnetic materials losses analysis under non-sinusoidal flux waveforms in power electronics systems. In Proceedings of the 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- McLyman, C. Transformer and Inductor Design Handbook, 3rd ed.; Taylor & Francis: Abingdon-on-Thames, UK, 2004. [Google Scholar]
- Tsepelev, V.; Starodubtsev, Y.; Konashkov, V.; Belozerov, V. Thermomagnetic analysis of soft magnetic nanocrystalline alloys. J. Alloys Compd. 2017, 707, 210–213. [Google Scholar] [CrossRef]
- Ouyang, G.; Chen, X.; Liang, Y.; Macziewski, C.; Cui, J. Review of Fe-6.5 wt% silicon steel-a promising soft magnetic material for sub-kHz application. J. Magn. Magn. Mater. 2019, 481, 234–250. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, Y.; Liu, D.; Deng, F.; Chen, Z. Impacts of inductor nonlinear characteristic in multi-converter microgrids: Modelling, analysis and mitigation. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 3333–3347. [Google Scholar] [CrossRef]
- Kazimierczuk, M. High-Frequency Magnetic Components, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Tumanski, S. Handbook of Magnetic Measurements; Series in Sensors; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Goldman, A. Magnetic Components for Power Electronics; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Wang, Y.; Calderon-Lopez, G.; Forsyth, A. Thermal management of compact nanocrystalline inductors for power dense converters. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 2696–2703. [Google Scholar] [CrossRef]
- Conde, C.; Blázquez, J.; Conde, A. Nanocrystallization process of the Hitperm Fe-Co-Nb-B alloys. In Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors; Idzikowski, B., Švec, P., Miglierini, M., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 111–121. [Google Scholar]
- Tsepelev, V.S.; Starodubtsev, Y.N. Nanocrystalline soft magnetic iron-based materials from liquid state to ready product. Nanomaterials 2021, 11, 108. [Google Scholar] [CrossRef]
- Lidow, A. Accelerating adoption of magnetic resonant wireless power based on the AirFuel, 2021. IEEE Wirel. Power Week. 2021. Available online: https://airfuel.org/wireless-power-week-2021-highlights/ (accessed on 24 February 2022).
- Jafari, M.; Malekjamshidi, Z.; Zhu, J. Copper loss analysis of a multiwinding high-frequency transformer for a magnetically-coupled residential microgrid. IEEE Trans. Ind. Appl. 2019, 55, 283–297. [Google Scholar] [CrossRef]
- Slionnnnnn. The Prototype of the Balanced Twisted Winding CM Choke. 2017. [image/JPEG]. Available online: https://en.wikipedia.org/wiki/File:4ffffss123.jpg (accessed on 24 February 2022).
- Corti, F.; Reatti, A.; Lozito, G.M.; Cardelli, E.; Laudani, A. Influence of non-linearity in losses estimation of magnetic components for DC-DC converters. Energies 2021, 14, 6498. [Google Scholar] [CrossRef]
- Zhu, F.; Yang, B. Power Transformer Design Practices; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Glisson, T. Introduction to Circuit Analysis and Design; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Wang, W.; Nysveen, A.; Magnusson, N. The influence of multidirectional leakage flux on transformer core losses. J. Magn. Magn. Mater. 2021, 539, 168370. [Google Scholar] [CrossRef]
- Kulkarni, S.; Khaparde, S. Transformer Engineering: Design, Technology, and Diagnostics, 2nd ed.; Taylor & Francis: Abingdon-on-Thames, UK, 2012. [Google Scholar]
- Tian, H.; Wei, Z.; Vaisambhayana, S.; Thevar, M.P.; Tripathi, A.; Kjær, P.C. Calculation and experimental validation on leakage inductance of a medium frequency transformer. In Proceedings of the IEEE 4th Southern Power Electronics Conference (SPEC), Singapore, 10–13 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Kothari, D.; Nagrath, I. Modern Power System Analysis; Tata McGraw-Hill Publishing Company: New York, NK, USA, 2003. [Google Scholar]
- Barg, S.; Alam, M.F.; Bertilsson, K. Optimization of high frequency magnetic devices with consideration of the effects of the magnetic material, the core geometry and the switching frequency. In Proceedings of the 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe), Lyon, France, 7–11 September 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Ouyang, Z. High Frequency Planar Magnetics for Power Converters; Presentation; ECPE Online Tutorial: Nuremberg, Germany, 2021. [Google Scholar]
- Barrios, E.L.; Ursúa, A.; Marroyo, L.; Sanchis, P. Analytical design methodology for Litz-wired high-frequency power transformers. IEEE Trans. Ind. Electron. 2015, 62, 2103–2113. [Google Scholar] [CrossRef]
- Brighenti, L.L.; Martins, D.C.; Dos Santos, W.M. Study of magnetic core geometries for coupling systems through a magnetic bus. In Proceedings of the IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Xi’an, China, 3–6 June 2019; pp. 29–36. [Google Scholar] [CrossRef]
- Rodriguez-Sotelo, D.; Rodriguez-Licea, M.A.; Soriano-Sanchez, A.G.; Espinosa-Calderon, A.; Perez-Pinal, F.J. Advanced ferromagnetic materials in power electronic converters: A state of the art. IEEE Access 2020, 8, 56238–56252. [Google Scholar] [CrossRef]
- Detka, K.; Górecki, K. Influence of the size and shape of magnetic core on thermal parameters of the inductor. Energies 2020, 13, 3842. [Google Scholar] [CrossRef]
- Jiandong, D.; Yang, L.; Hao, L. Research on ferromagnetic components J-A model—A review. In Proceedings of the International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8 November 2018; pp. 3288–3294. [Google Scholar]
- Saeed, S.; Georgious, R.; Garcia, J. Modeling of magnetic elements including losses-application to variable inductor. Energies 2020, 13, 1865. [Google Scholar] [CrossRef] [Green Version]
- Ishikura, Y.; Imaoka, J.; Noah, M.; Yamamoto, M. Core loss evaluation in powder cores: A comparative comparison between electrical and calorimetric methods. In Proceedings of the International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), Niigata, Japan, 20–24 May 2018; pp. 1087–1094. [Google Scholar]
- Hanif, A. Measurement of Core Losses in Toroidal Inductors with Different Magnetic Materials. Master’s Thesis, Tampere University of Technology, Tampere, Finland, 2017. [Google Scholar]
- Wang, Y. Modelling and Characterisation of Losses in Nanocrystalline Cores. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2015. [Google Scholar]
- Yue, S.; Li, Y.; Yang, Q.; Yu, X.; Zhang, C. Comparative analysis of core loss calculation methods for magnetic materials under nonsinusoidal excitations. IEEE Trans. Magn. 2018, 54, 6300605. [Google Scholar] [CrossRef]
- Bi, S. Charakterisieren und Modellieren der Ferromagnetischen Hysterese. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, 2014. [Google Scholar]
- Iniewski, K. Advanced Circuits for Emerging Technologies; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Sudhoff, S. Power Magnetic Devices: A Multi-Objective Design Approach; IEEE Press Series on Power Engineering; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Spaldin, N. Magnetic Materials: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Dong Tan, F.; Vollin, J.L.; Cuk, S.M. A practical approach for magnetic core-loss characterization. IEEE Trans. Power Electron. 1995, 10, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Fiorillo, F.; Mayergoyz, I. Characterization and Measurement of Magnetic Materials; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- O’Handley, R. Modern Magnetic Materials: Principles and Applications; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Krings, A.; Soulard, J. Overview and comparison of iron loss models for electrical machines. J. Electr. Eng. Elektrotechnicky Cas. 2010, 10, 162–169. [Google Scholar]
- Sai Ram, B.; Kulkarni, S. An isoparametric approach to model ferromagnetic hysteresis including anisotropy and symmetric minor loops. J. Magn. Magn. Mater. 2019, 474, 574–584. [Google Scholar] [CrossRef]
- Mayergoyz, I. Mathematical Models of Hysteresis and Their Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Zhao, X.; Liu, X.; Zhao, Z.; Zou, X.; Xiao, Y.; Li, G. Measurement and modeling of hysteresis characteristics in ferromagnetic materials under DC magnetizations. AIP Adv. 2019, 9, 025111. [Google Scholar] [CrossRef] [Green Version]
- Jiles, D.; Atherton, D. Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater. 1986, 61, 48–60. [Google Scholar] [CrossRef]
- Bernard, Y.; Mendes, E.; Bouillault, F. Dynamic hysteresis modeling based on Preisach model. IEEE Trans. Magn. 2002, 38, 885–888. [Google Scholar] [CrossRef]
- Magnetic, M. Jiles-Atherton Model of Magnetic Hysteresis Loops of Mn-Zn Ferrite. 2016. [image/PNG]. Available online: https://commons.wikimedia.org/wiki/File:Jiles-Atherton_model_of_magnetic_hysteresis_loops_of_Mn-Zn_ferrite.png (accessed on 24 February 2022).
- Aboura, F.; Touhami, O. Modeling and analyzing energetic hysteresis classical model. In Proceedings of the International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Algiers, Algeria, 28–31 October 2018; pp. 1–5. [Google Scholar]
- Chang, L.; Jahns, T.M.; Blissenbach, R. Characterization and modeling of soft magnetic materials for improved estimation of PWM-induced iron loss. IEEE Trans. Ind. Appl. 2020, 56, 287–300. [Google Scholar] [CrossRef]
- Ducharne, B.; Tsafack, P.; Tene Deffo, Y.; Zhang, B.; Sebald, G. Anomalous fractional magnetic field diffusion through cross-section of a massive toroidal ferromagnetic core. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105450. [Google Scholar] [CrossRef]
- Szular, Z.; Mazgaj, W. Calculations of eddy currents in electrical steel sheets taking into account their magnetic hysteresis. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 2019, 38, 1263–1273. [Google Scholar] [CrossRef]
- Yu, Q.; Chu, S.; Li, W.; Tian, L.; Wang, X.; Cheng, Y. Electromagnetic shielding analysis of a canned permanent magnet motor. IEEE Trans. Ind. Electron. 2020, 67, 8123–8130. [Google Scholar] [CrossRef]
- Marchenkov, Y.; Khvostov, A.; Slavinskaya, A.; Zhgut, A.; Chernov, V. The eddy current diagnostics method for the plastically deformed area sizes evaluation in non-magnetic metals. J. Appl. Eng. Sci. 2020, 18, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Müller, S.; Keller, M.; Maier, M.; Parspour, N. Comparison of iron loss calculation methods for soft magnetic composite. In Proceedings of the Brazilian Power Electronics Conference (COBEP), Juiz de Fora, Brazil, 19–22 November 2017; pp. 1–6. [Google Scholar]
- Ionel, D.M.; Popescu, M.; McGilp, M.I.; Miller, T.J.E.; Dellinger, S.J.; Heideman, R.J. Computation of Core Losses in Electrical Machines Using Improved Models for Laminated Steel. IEEE Trans. Ind. Appl. 2007, 43, 1554–1564. [Google Scholar] [CrossRef] [Green Version]
- Bertotti, G. General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 1988, 24, 621–630. [Google Scholar] [CrossRef]
- Mehboob, N. Hysteresis Properties of Soft Magnetic Materials. Ph.D. Thesis, University of Vienna, Wien, Austria, 2012. [Google Scholar]
- Sun, H.; Li, Y.; Lin, Z.; Zhang, C.; Yue, S. Core loss separation model under square voltage considering DC bias excitation. AIP Adv. 2020, 10, 015229. [Google Scholar] [CrossRef] [Green Version]
- Steinmetz, C.P. On the law of hysteresis. Trans. Am. Inst. Electr. Eng. 1892, IX, 1–64. [Google Scholar] [CrossRef]
- Mu, M. High Frequency Magnetic Core Loss Study. 2013. Available online: https://vtechworks.lib.vt.edu/bitstream/handle/10919/19296/Mu_M_D_2013.pdf (accessed on 24 February 2022).
- Zhou, T.; Zhou, G.; Ombach, G.; Gong, X.; Wang, Y.; Shen, J. Improvement of Steinmetz’s parameters fitting formula for ferrite soft magnetic materials. In Proceedings of the IEEE Student Conference on Electric Machines and Systems, Huzhou, China, 14–16 December 2018; pp. 1–4. [Google Scholar]
- Erickson, R.; Maksimović, D. Fundamentals of Power Electronics; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Chen, D.Y. Comparisons of high frequency magnetic core losses under two different driving conditions: A sinusoidal voltage and a square-wave voltage. In Proceedings of the IEEE Power Electronics Specialists Conference, Syracuse, NY, USA, 13–15 June 1978; pp. 237–241. [Google Scholar]
- Mulder, S.A. Fit formula for power loss in ferrites and their use in transformer design. In Proceedings of the 26th International Conference on Power Conversion, PCIM, Orlando, FL, USA; 1983; pp. 345–359. [Google Scholar]
- Venkatachalam, K.; Sullivan, C.R.; Abdallah, T.; Tacca, H. Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters. In Proceedings of the 2002 IEEE Workshop on Computers in Power Electronics, Mayaguez, PR, USA, 3–4 June 2002; pp. 36–41. [Google Scholar] [CrossRef] [Green Version]
- Muhlethaler, J.; Biela, J.; Kolar, J.W.; Ecklebe, A. Improved core-loss calculation for magnetic components employed in power electronic systems. IEEE Trans. Power Electron. 2012, 27, 964–973. [Google Scholar] [CrossRef]
- Shen, W.; Wang, F.; Boroyevich, D.; Tipton, C.W. Loss Characterization and calculation of nanocrystalline cores for high-frequency magnetics applications. In Proceedings of the APEC 07—Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February–1 March 2007; pp. 90–96. [Google Scholar]
- Reinert, J.; Brockmeyer, A.; De Doncker, R.W.A.A. Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation. IEEE Trans. Ind. Appl. 2001, 37, 1055–1061. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; Yang, Q.; Yue, S.; Zhang, C. Loss characteristics and model verification of soft magnetic composites under non-sinusoidal excitation. IEEE Trans. Magn. 2019, 55, 6100204. [Google Scholar] [CrossRef]
- Yue, S.; Yang, Q.; Li, Y.; Zhang, C. Core loss calculation for magnetic materials employed in SMPS under rectangular voltage excitations. AIP Adv. 2018, 8, 056121. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Yang, Q.; Li, Y.; Zhang, C.; Xu, G. Core loss calculation of the soft ferrite cores in high frequency transformer under non-sinusoidal excitations. In Proceedings of the 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, Australia, 11–14 August 2017; pp. 1–5. [Google Scholar]
- Karthikeyan, V.; Rajasekar, S.; Pragaspathy, S.; Blaabjerg, F. Core loss estimation of magnetic links in DAB converter operated in high-frequency non-sinusoidal flux waveforms. In Proceedings of the IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Chennai, India, 18–21 December 2018; pp. 1–5. [Google Scholar]
- Marin-Hurtado, A.J.; Rave-Restrepo, S.; Escobar-Mejía, A. Calculation of core losses in magnetic materials under nonsinusoidal excitation. In Proceedings of the 2016 13th International Conference on Power Electronics (CIEP), Guanajuato, Mexico, 20–23 June 2016; pp. 87–91. [Google Scholar]
- Valchev, V.; Van den Bossche, A. Inductors and Transformers for Power Electronics; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Barg, S.; Ammous, K.; Mejbri, H.; Ammous, A. An improved empirical formulation for magnetic core losses estimation under nonsinusoidal induction. IEEE Trans. Power Electron. 2017, 32, 2146–2154. [Google Scholar] [CrossRef]
- Villar, I.; Rufer, A.; Viscarret, U.; Zurkinden, F.; Etxeberria-Otadui, I. Analysis of empirical core loss evaluation methods for non-sinusoidally fed medium frequency power transformers. In Proceedings of the IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008; pp. 208–213. [Google Scholar] [CrossRef]
- Ridley, R.; Nace, A. Modeling ferrite core losses. Switch. Power Mag. 2006, 3, 1–7. [Google Scholar]
- Bar, S.; Tabrikian, J. Adaptive waveform design for target detection with sequential composite hypothesis testing. In Proceedings of the IEEE Statistical Signal Processing Workshop (SSP), Palma de Mallorca, Spain, 26–29 June 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Villar, I.; Viscarret, U.; Etxeberria-Otadui, I.; Rufer, A. Global loss evaluation methods for nonsinusoidally fed medium-frequency power transformers. IEEE Trans. Ind. Electron. 2009, 56, 4132–4140. [Google Scholar] [CrossRef]
- Górecki, K.; Detka, K. The Parameter Estimation of the Electrothermal Model of Inductors. 2015. Available online: http://www.midem-drustvo.si/Journal%20papers/MIDEM_45(2015)1p29.pdf (accessed on 24 February 2022).
- Górecki, K.; Detka, K. Influence of power losses in the inductor core on characteristics of selected DC–DC converters. Energies 2019, 12, 1991. [Google Scholar] [CrossRef] [Green Version]
- Dlala, E. Comparison of models for estimating magnetic core losses in electrical machines using the finite-element method. IEEE Trans. Magn. 2009, 45, 716–725. [Google Scholar] [CrossRef]
- Pradhan, K.K.; Chakraverty, S. Chapter four—Finite element method. In Computational Structural Mechanics; Pradhan, K.K., Chakraverty, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 25–28. [Google Scholar]
- Peyton, A. 3—Electromagnetic induction tomography. In Industrial Tomography; Wang, M., Ed.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Sawston, UK, 2015; pp. 61–107. [Google Scholar] [CrossRef]
- Rapp, B.E. Chapter 32—Finite Element Method. In Microfluidics: Modelling, Mechanics and Mathematics; Rapp, B.E., Ed.; Micro and Nano Technologies; Elsevier: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Meunier, G. The Finite Element Method for Electromagnetic Modeling; ISTE, Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Multiphysics, C. The Finite Element Method (FEM). 2017. Available online: https://www.comsol.com/multiphysics/finite-element-method (accessed on 24 February 2022).
- Calderon-Lopez, G.; Wang, Y.; Forsyth, A.J. Mitigation of gap losses in nanocrystalline tape-wound cores. IEEE Trans. Power Electron. 2019, 34, 4656–4664. [Google Scholar] [CrossRef] [Green Version]
- Ansys, I. Ansys Twin Builder Digital Twin: Simulation-Based & Hybrid Analytics. 2021. Available online: https://www.ansys.com/products/digital-twin/ansys-twin-builder (accessed on 24 February 2022).
- COMSOL Inc. Comsol Multiphysics; COMSOL Inc.: Burlington, MA, USA, 2021. [Google Scholar]
- JDJ Co. JMAG Products Catalog; JDJ Co.: Singapore, 2020. [Google Scholar]
- Hansen, N.; Wiechowski, N.; Kugler, A.; Kowalewski, S.; Rambow, T.; Busch, R. Model-in-the-loop and software-in-the-loop testing of closed-loop automotive software with arttest. In Informatik 2017; Eibl, M., Gaedke, M., Eds.; Gesellschaft für Informatik: Bonn, Germany, 2017; pp. 1537–1549. [Google Scholar] [CrossRef]
- Wikipedia. List of Finite Element Software Packages. 2021. Available online: https://en.wikipedia.org/wiki/List_of_finite_element_software_packages (accessed on 24 February 2022).
- Haase, H. Forward Converter ATX PC Power Supply. 2013. [image/JPEG]. Available online: https://commons.wikimedia.org/wiki/File:Forward_Converter_ATX_PC_Power_Supply_IMG_1092.jpg (accessed on 24 February 2022).
- Hurley, W.G. Passives in Power Electroics: Magnetic Component Design and Simulation; Presentation; ECPE Online Tutorial: Nuremberg, Germany, 2021. [Google Scholar]
- Ionita, V.; Cazacu, E.; Petrescu, L. Effect of voltage harmonics on iron losses in magnetic cores with hysteresis. In Proceedings of the 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenia, 13–16 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Ruiz-Robles, D.; Figueroa-Barrera, C.; Moreno-Goytia, E.L.; Venegas-Rebollar, V. An experimental comparison of the effects of nanocrystalline core geometry on the performance and dispersion inductance of the MFTs applied in DC-DC converters. Electronics 2020, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Li, X.; Ghosh, S.; Zhao, H.; Shen, Y.; Long, T. Nanocrystalline powder cores for high-power high-frequency applications. IEEE Trans. Power Electron. 2020, 35, 10821–10830. [Google Scholar] [CrossRef]
- Islam, M.R.; Farrok, O.; Rahman, M.A.; Kiran, M.R.; Muttaqi, K.M.; Sutanto, D. Design and characterisation of advanced magnetic material-based core for isolated power converters used in wave energy generation systems. IET Electr. Power Appl. 2020, 14, 733–741. [Google Scholar] [CrossRef]
- Bolsi, P.C.; Sartori, H.C.; Pinheiro, J.R. Comparison of core technologies applied to power inductors. In Proceedings of the 13th IEEE International Conference on Industry Applications (INDUSCON), Sao Paulo, Brazil, 12–14 November 2018; pp. 1100–1106. [Google Scholar] [CrossRef]
- Imaoka, J.; Yu-Hsin, W.; Shigematsu, K.; Aoki, T.; Noah, M.; Yamamoto, M. Effects of high-frequency operation on magnetic components in power converters. In Proceedings of the IEEE 12th Energy Conversion Congress Exposition—Asia (ECCE-Asia), Singapore, 24–27 May 2021; pp. 978–984. [Google Scholar] [CrossRef]
- Delgado, A.; Oliver, J.A.; Cobos, J.A.; Rodriguez-Moreno, J. Macroscopic modeling of magnetic microwires for finite element simulations of inductive components. IEEE Trans. Power Electron. 2020, 35, 8452–8459. [Google Scholar] [CrossRef]
- Abourida, S.; Dufour, C.; Belanger, J.; Yamada, T.; Arasawa, T. Hardware-in-the-loop simulation of finite-element based motor drives with RT-LAB and JMAG. In Proceedings of the IEEE International Symposium on Industrial Electronics, Montreal, QC, Canada, 9–13 July 2006; Volume 3, pp. 2462–2466. [Google Scholar] [CrossRef]
- Bjørheim, F.; Siriwardane, S.C.; Pavlou, D. A review of fatigue damage detection and measurement techniques. Int. J. Fatigue 2022, 154, 106556. [Google Scholar] [CrossRef]
- Faba, A.; Quondam Antonio, S. An Overview of Non-Destructive Testing of Goss Texture in Grain-Oriented Magnetic Steels. Mathematics 2021, 9, 1539. [Google Scholar] [CrossRef]
- Ibrahim, M.; Singh, S.; Barman, D.; Bernier, F.; Lamarre, J.M.; Grenier, S.; Pillay, P. Selection of Soft Magnetic Composite Material for Electrical Machines using 3D FEA Simulations. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 3860–3865. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, L.; Zhao, Y.; Wang, X.; Kong, Y.; Ma, Q.; Chen, Z.; Uchimoto, T.; Takagi, T. Features extraction and discussion in a novel frequency-band-selecting pulsed eddy current testing method for the detection of a certain depth range of defects. NDT E Int. 2020, 111, 102211. [Google Scholar] [CrossRef]
- Li, E.; Chen, Y.; Chen, X.; Wu, J. Defect Width Assessment Based on the Near-Field Magnetic Flux Leakage Method. Sensors 2021, 21, 5424. [Google Scholar] [CrossRef]
- Galluzzi, R.; Amati, N.; Tonoli, A. Modeling, Design, and Validation of Magnetic Hysteresis Motors. IEEE Trans. Ind. Electron. 2020, 67, 1171–1179. [Google Scholar] [CrossRef]
- Kang, S.G.; Song, M.S.; Kim, J.W.; Lee, J.W.; Kim, J. Near-Field Communication in Biomedical Applications. Sensors 2021, 21, 703. [Google Scholar] [CrossRef]
- Calderon-Lopez, G.; Todd, R.; Forsyth, A.J.; Wang, J.; Wang, W.; Yuan, X.; Aldhaher, S.; Kwan, C.; Yates, D.; Mitcheson, P.D. Towards Lightweight Magnetic Components for Converters with Wide-bandgap Devices. In Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, 29 November–2 December 2020; pp. 3149–3155. [Google Scholar] [CrossRef]
- Zuo, S.; Heidari, H.; Farina, D.; Nazarpour, K. Miniaturized Magnetic Sensors for Implantable Magnetomyography. Adv. Mater. Technol. 2020, 5, 2000185. [Google Scholar] [CrossRef]
- Trohman, R.G.; Huang, H.D.; Sharma, P.S. The Miniaturization of Cardiac Implantable Electronic Devices: Advances in Diagnostic and Therapeutic Modalities. Micromachines 2019, 10, 633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murzin, D.; Mapps, D.J.; Levada, K.; Belyaev, V.; Omelyanchik, A.; Panina, L.; Rodionova, V. Ultrasensitive Magnetic Field Sensors for Biomedical Applications. Sensors 2020, 20, 1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, S.; Park, S.H.; Kim, E.; Kim, J.y.; Kim, S.W.; Choi, H. A Magnetically Powered Stem Cell-Based Microrobot for Minimally Invasive Stem Cell Delivery via the Intranasal Pathway in a Mouse Brain. Adv. Healthc. Mater. 2021, 10, 2100801. [Google Scholar] [CrossRef]
- Khan, M.A.; Sun, J.; Li, B.; Przybysz, A.; Kosel, J. Magnetic sensors-A review and recent technologies. Eng. Res. Express 2021, 3, 022005. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, V.; Gupta, D.; Babbar, A. A Review Study on Miniaturization: A Boon or Curse. In Advanced Manufacturing and Processing Technology; CRC Press: Boca Raton, FL, USA, 2020; pp. 111–131. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Li, Y.; Chen, Y.; Xu, L. Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by MEMS Technology. Sensors 2018, 18, 732. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wang, K.; Xu, H.; Yan, W.; Jin, Q.; Cui, D. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review. Talanta 2019, 202, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Torrente-Rodríguez, R.M.; Wang, M.; Gao, W. The Era of Digital Health: A Review of Portable and Wearable Affinity Biosensors. Adv. Funct. Mater. 2020, 30, 1906713. [Google Scholar] [CrossRef]
- Purohit, B.; Kumar, A.; Mahato, K.; Chandra, P. Smartphone-assisted personalized diagnostic devices and wearable sensors. Curr. Opin. Biomed. Eng. 2020, 13, 42–50. [Google Scholar] [CrossRef]
- Dinis, H.; Mendes, P. A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices. Biosens. Bioelectron. 2021, 172, 112781. [Google Scholar] [CrossRef]
- Sitti, M.; Wiersma, D.S. Pros and Cons: Magnetic versus Optical Microrobots. Adv. Mater. 2020, 32, 1906766. [Google Scholar] [CrossRef]
- Zhou, H.; Mayorga-Martinez, C.C.; Pané, S.; Zhang, L.; Pumera, M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021, 121, 4999–5041. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, J.B.; Beaudoin, G.; Martel, S. Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans. Biomed. Eng. 2006, 53, 292–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitol, E.A.; Novosad, V.; Rozhkova, E.A. Microfabricated magnetic structures for future medicine: From sensors to cell actuators. Nanomedicine 2012, 7, 1611–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Li, C.; Dong, L.; Zhao, J. A Review of Microrobot’s System: Towards System Integration for Autonomous Actuation In Vivo. Micromachines 2021, 12, 1249. [Google Scholar] [CrossRef]
- Bandari, V.K.; Schmidt, O.G. System-Engineered Miniaturized Robots: From Structure to Intelligence. Adv. Intell. Syst. 2021, 3, 2000284. [Google Scholar] [CrossRef]
- Xu, K.; Xu, S.; Wei, F. Recent progress in magnetic applications for micro- and nanorobots. Beilstein J. Nanotechnol. 2021, 12, 744–755. [Google Scholar] [CrossRef]
- Hein, H.; Li, Y.; Yue, S.; Sun, H. Core Losses Analysis for Soft Magnetic Materials under SPWM Excitations. Int. J. Electromagn. Appl. 2020, 10, 1–6. [Google Scholar]
- Sundaria, R.; Nair, D.G.; Lehikoinen, A.; Arkkio, A.; Belahcen, A. Effect of Laser Cutting on Core Losses in Electrical Machines—Measurements and Modeling. IEEE Trans. Ind. Electron. 2020, 67, 7354–7363. [Google Scholar] [CrossRef]
- Lu, K.; Liu, X.; Wang, J.; Yang, T.; Xu, J. Simultaneous improvements of effective magnetic permeability, core losses and temperature characteristics of Fe-Si soft magnetic composites induced by annealing treatment. J. Alloys Compd. 2022, 892, 162100. [Google Scholar] [CrossRef]
- Corti, F.; Reatti, A.; Cardelli, E.; Faba, A.; Rimal, H. Improved Spice simulation of dynamic core losses for ferrites with nonuniform field and its experimental validation. IEEE Trans. Ind. Electron. 2020, 68, 12069–12078. [Google Scholar] [CrossRef]
- Gutfleisch, O. Magnetic Materials in Sustainable Energy. 2012. Available online: https://www.jst.go.jp/sicp/ws2011_eu/presentation/presentation_04.pdf (accessed on 24 February 2022).
- Group, H.M. Examples of Products That Help Realize a Sustainable Society. 2020. Available online: https://www.hitachi-metals.co.jp/e/ir/pdf/ar/2020/2020_17.pdf (accessed on 24 February 2022).
- Research, A.M. Soft Magnetic Materials Market Outlook—2026. 2019. Available online: https://www.alliedmarketresearch.com/soft-magnetic-materials-market#:~:text=Soft%20Magnetic%20Materials%20Market%20Outlook,8.8%25%20from%202019%20to%202026. (accessed on 24 February 2022).
- Matizamhuka, W. The impact of magnetic materials in renewable energy-related technologies in the 21st century industrial revolution: The case of South Africa. Adv. Mater. Sci. Eng. 2018, 2018, 3149412. [Google Scholar] [CrossRef] [Green Version]
Steinmetz’s Equation | Characteristics |
---|---|
OSE | Only for sinusoidal signals. |
Hysteresis losses proportional to f. | |
Eddy current losses proportional to . | |
The values for and are between 1 and 3. | |
Equivalent f calculus. | |
MSE | Considers in the core losses. |
Its accuracy decreases with harmonics increment. | |
Considers variation and its instantaneous value. | |
GSE | Compensates the mathematical error between OSE and GSE for sinusoidal excitations. |
Considers the DC-level in the signal. | |
Takes the peak to peak value of . | |
iGSE | Accurate with a high number of harmonics. |
Core losses calculus with frequencies and duty cycles variables. | |
It can be used for rectangular signals. | |
NSE | The second and third harmonic are dominants at moderate values of D. |
For extreme values of D (∼95%) a high alpha value will give a better adjustment. | |
iGSE | Characteristics similar to iGSE. |
Applications with trapezoidal . | |
Takes into account the material relaxation effect. | |
Require parameters not provided by the materials manufacturers. | |
WcSE | Proposed to correlate a not sinusoidal signal with a sinusoidal with the same measured |
value of . |
Magnetic Sensing Technology | Sensitivity | Frequency | Miniaturization Achieving | Portability | Cost |
---|---|---|---|---|---|
OPM | Acceptable | 0 Hz | Unacceptable | Unacceptable | Marginally |
Acceptable | |||||
Coils | Acceptable | 60 Hz | Unacceptable | Acceptable | Excellent |
ME | Acceptable | 0–1 kHz | Acceptable | Excellent | Excellent |
Fluxgate | Acceptable | 0–5 kHz | Excellent | Excellent | Acceptable |
GMI | Marginally | 0–10 kHz | Excellent | Excellent | Excellent |
Acceptable | |||||
SQUID | Excellent | 0–100 kHz | Unacceptable | Unacceptable | Unacceptable |
MR | Acceptable | 0–GHz | Excellent | Excellent | Excellent |
Loss Model | Steinmetz’s Parameters | Additional Data | Ferromagnetic Materials | Characteristics | Accuracy |
---|---|---|---|---|---|
Preisach | No | Yes | All unless powder cores | Based on domains movements and B-H loop Many additional data. | Computing cost, approximations |
J-A | No | Yes | All unless powder cores | Non-linear equations systems. Based on magnetization core process. Many additional data. | Computing cost, approximations |
LSM | No | Yes | All unless powder core | Suitable only for lineal systems. Very accuracy for laminar materials. | Good |
TDA | No | No | All unless powder cores | Suitable only for lineal systems. Valid for PWM signals <400 Hz. | Good |
OSE | Yes | No | All | Base of empiric loss models. | Low |
MSE | Yes | No | All | Not suitable for signals with many harmonics. | |
GSE | Yes | No | All | Consider CD-level in the signal. | <iGSE |
iGSE | Yes | No | All | Signals with strong harmonics. | Same as iGSE |
NSE | Yes | No | No reported | A similar version of GSE. | No reported |
iGSE | Yes | Yes | All | Consider the relaxation effect. Signals with strong harmonics. | Same as iGSE |
WcSE | Yes | Yes | Nanocrystal, amorphous and powder core | Physical base not verified. A practical and direct method. | D < 0.5 |
CHW | No | Yes | Nanocrystal, amorphous and powder core | Square waveform as the sum of its components. | Good |
Villar | Yes | No | Amorphous material | Core loss calculus implemented a piecewise linear model (PWL). | Good |
Górecki | Yes | No | Nanocrystal, amorphous and powder core | Considers thermal, electrical and magnetic effects | Same as manufacturers |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Sotelo, D.; Rodriguez-Licea, M.A.; Araujo-Vargas, I.; Prado-Olivarez, J.; Barranco-Gutiérrez, A.-I.; Perez-Pinal, F.J. Power Losses Models for Magnetic Cores: A Review. Micromachines 2022, 13, 418. https://doi.org/10.3390/mi13030418
Rodriguez-Sotelo D, Rodriguez-Licea MA, Araujo-Vargas I, Prado-Olivarez J, Barranco-Gutiérrez A-I, Perez-Pinal FJ. Power Losses Models for Magnetic Cores: A Review. Micromachines. 2022; 13(3):418. https://doi.org/10.3390/mi13030418
Chicago/Turabian StyleRodriguez-Sotelo, Daniela, Martin A. Rodriguez-Licea, Ismael Araujo-Vargas, Juan Prado-Olivarez, Alejandro-Israel Barranco-Gutiérrez, and Francisco J. Perez-Pinal. 2022. "Power Losses Models for Magnetic Cores: A Review" Micromachines 13, no. 3: 418. https://doi.org/10.3390/mi13030418
APA StyleRodriguez-Sotelo, D., Rodriguez-Licea, M. A., Araujo-Vargas, I., Prado-Olivarez, J., Barranco-Gutiérrez, A. -I., & Perez-Pinal, F. J. (2022). Power Losses Models for Magnetic Cores: A Review. Micromachines, 13(3), 418. https://doi.org/10.3390/mi13030418