Significance of Rosseland’s Radiative Process on Reactive Maxwell Nanofluid Flows over an Isothermally Heated Stretching Sheet in the Presence of Darcy–Forchheimer and Lorentz Forces: Towards a New Perspective on Buongiorno’s Model
Abstract
:1. Introduction
2. Formulation of the Problem
3. Solution Methodology
4. Results and Discussion
5. Conclusions
- The involvement of the Maxwell model in nanofluid flow provided more relaxation time for the diffusion and dilution of nanoparticles in the base fluid;
- The presence of the porosity factor was a significant source of increment in the drag force and the reduction in fluid flow along the horizontal axis;
- The impact of thermal radiation was prominent in the case of the temperature profile; however, it impacted the other two profiles as well;
- The Deborah number coming from the relaxation time provided in the Maxwell model enhanced the concentration and temperature profiles and decelerated the fluid;
- Brownian diffusion enhanced the temperature profile and reduced the concentration profile;
- The chemical reaction appeared to be a reducing factor for the concentration of nanoparticles in the base fluid;
- The trio of the porosity, the Forchheimer number, and the Deborah number increased the drag force;
- The heat flux reduced for the thermal radiation factor; however, the same parameter enhanced the mass flux rate;
- A rise was noted in the mass flux rate for augmented values of the Lewis number;
- Despite a difference in the numerical data of the Nusselt number for the convective and non-convective boundary, the trend of the increase and decrease of the flux rate was identical for both types of boundary conditions.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Cartesian coordinates/m | |
Coordinates of the velocity vector () | |
Nanofluid viscosity (kinematic) () | |
Nanofluid viscosity (dynamic) () | |
Inertial coefficient (m) | |
Electric conductivity () | |
Magnetic impact () | |
Permeability () | |
Density of the nanofluid () | |
Stefan–Boltzmann constant () | |
Thermal diffusivity () | |
Mean absorption factor () | |
T | Temperature (K) |
C | Concentration () |
Temperature at the wall (K) | |
Concentration of nanoparticles at the wall () | |
Nanofluid’s productive heat capacity | |
Temperature far away from the surface (boundary condition) | |
Concentration of nanoparticles far away from the surface | |
(boundary condition) | |
Chemical reaction () | |
Nanoparticles’ productive heat capacity () | |
Thermophoretic effect () | |
Brownian diffusion factor () | |
Local inertia | |
M | Magnetic parameter |
e | Positive constant number () |
Lewis factor | |
Brownian diffusion parameter | |
Prandtl factor | |
Thermophoretic parameter | |
Local Nusselt number (heat flux) | |
Local Sherwood number (mass flux) | |
Dimensionless velocity | |
Dimensionless variable | |
Dimensionless concentration of the nanoparticles | |
Dimensionless temperature field | |
Relaxation time involvement | |
Radiative heat flux () | |
Deborah number | |
Porosity parameter | |
Radiation factor | |
K | First-order chemical reaction |
Dimensionless thermal coefficient | |
Corrective concentration coefficient |
References
- Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. Dev. Appl. Non-Newt. Flows 1995, 2, 99–105. [Google Scholar]
- Buongiorno, J.; Hu, W. Nanofluid coolants for advanced nuclear power plants. Proc. ICAPP 2005, 2005, 5705. [Google Scholar]
- Benos, L.; Sarris, I.E. Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. Int. J. Heat Mass Transf. 2019, 130, 862–873. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Sharma, R.; Hussain, S.M.; Chamkha, A.J.; Mamatha, E. A Numerical and Statistical Approach to Capture the Flow Characteristics of Maxwell Hybrid Nanofluid Containing Copper and Graphene Nanoparticles. Chin. J. Phys. 2021. [Google Scholar] [CrossRef]
- Gowda, R.J.P.; Kumar, R.N.; Jyothi, A.M.; Prasannakumara, B.C.; Sarris, I.E. Impact of Binary Chemical Reaction and Activation Energy on Heat and Mass Transfer of Marangoni Driven Boundary Layer Flow of a Non-Newtonian Nanofluid. Processes 2021, 9, 702. [Google Scholar] [CrossRef]
- Hussain, A.; Hassan, A.; Arshad, M.; Rehman, A.; Matoog, R.T.; Abdeljawad, T. Numerical Simulation and Thermal Enhancement of Multi-Based Nanofluid Over an Embrittled Cone. Case Stud. Therm. Eng. 2021, 28, 101614. [Google Scholar] [CrossRef]
- Benos, L.T.; Karvelas, E.G.; Sarris, I.E. Crucial effect of aggregations in CNT-water nanofluid magnetohydrodynamic natural convection. Therm. Sci. Eng. Prog. 2019, 11, 263–271. [Google Scholar] [CrossRef]
- Yusuf, T.A.; Mabood, F.; Prasannakumara, B.C.; Sarris, I.E. Magneto-Bioconvection Flow of Williamson Nanofluid over an Inclined Plate with Gyrotactic Microorganisms and Entropy Generation. Fluids 2021, 6, 109. [Google Scholar] [CrossRef]
- Benos, L.T.; Karvelas, E.G.; Sarris, I.E. A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton–Crosser mode. Int. J. Heat Mass Transf. 2019, 135, 548–560. [Google Scholar] [CrossRef]
- Apostolos, A.G.; Benos, L.T.; Sofiadis, G.N.; Sarris, I.E. A printed-circuit heat exchanger consideration by exploiting an Al2O3-water nanofluid: Effect of the nanoparticles interfacial layer on heat transfer. Therm. Sci. Eng. Prog. 2021, 22, 100818. [Google Scholar]
- Karvelas, E.G.; Karakasidis, T.E.; Sarris, I.E. Computational analysis of paramagnetic spherical Fe3O4 nanoparticles under permanent magnetic fields. Comput. Mater. Sci. 2018, 154, 464–471. [Google Scholar] [CrossRef]
- Alghamdi, M.; Wakif, A.; Thumma, T.; Khan, U.; Baleanu, D.; Rasool, G. Significance of variability in magnetic field strength and heat source on the radiative-convective motion of sodium alginate-based nanofluid within a Darcy-Brinkman porous structure bounded vertically by an irregular slender surface. Case Stud. Therm. Eng. 2021, 28, 101428. [Google Scholar] [CrossRef]
- Rasool, G.; Shafiq, A.; Chu, Y.M.; Bhutta, M.S.; Ali, A. Optimal Homotopic Exploration of Features of Cattaneo–Christov Model in Second Grade Nanofluid Flow via Darcy–Forchheimer Medium Subject to Viscous Dissipation and Thermal Radiation. Comb. Chem. High Throughput Screen. 2021, 24. [Google Scholar] [CrossRef]
- Shafiq, A.; Lone, S.A.; Sindhu, T.N.; Al-Mdallal, Q.M.; Rasool, G. Statistical modeling for bioconvective tangent hyperbolic nanofluid towards stretching surface with zero mass flux condition. Sci Rep. 2021, 11, 13869. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: New York, NY, USA, 1999. [Google Scholar]
- Karniadakis, G.; Beskok, A. Micro Flows; Springer: New York, NY, USA, 2002. [Google Scholar]
- Karniadakis, G.; Beskok, A.; Aluru, N. Micro Flows and Nano Flows: Fundamentals and Simulation; Springr: New York, NY, USA, 2005. [Google Scholar]
- Forchheimer, P. Wasserbewegung durch boden. Zeitschrift Ver. D. Ing. 1901, 45, 1782–1788. [Google Scholar]
- Muskat, M. The Flow of Homogeneous Fluids Through Porous Media; Edwards: Ogemaw, MI, USA, 1946. [Google Scholar]
- Pal, D.; Mondal, H. Hydromagnetic convective diffusion of species in Darcy–Forchheimer porous medium with non-uniform heat source/sink and variable viscosity. Int. Commun. Heat Mass Transf. 2012, 39, 913–917. [Google Scholar] [CrossRef]
- Hayat, T.; Taseer, M.; Al-Mezal, S.; Liao, S.J. Darcy–Forchheimer flow with variable thermal conductivity and cattaneo-christov heat flux. Int. Numer. Methods Heat Fluid Flow 2016, 26, 2355–2369. [Google Scholar] [CrossRef]
- Eid, M.R.; Mabood, F. Two-phase permeable non-Newtonian cross-nanomaterial flow with Arrhenius energy and entropy generation: Darcy–Forchheimer model. Phys. Scr. 2020, 95, 105209. [Google Scholar] [CrossRef]
- Shankaralingappa, B.M.; Prasannakumara, B.C.; Gireesha, B.J.; Sarris, I.E. The Impact of Cattaneo–Christov Double Diffusion on Oldroyd-B Fluid Flow over a Stretching Sheet with Thermophoretic Particle Deposition and Relaxation Chemical Reaction. Inventions 2021, 6, 95. [Google Scholar] [CrossRef]
- Jamshed, W.; Nisar, K.S.; Gowda, R.J.P.; Kumar, R.N.; Prasannakumara, B.C. Radiative heat transfer of second grade nanofluid flow past a porous flat surface: A single-phase mathematical model. Phys. Scr. 2021, 96, 064006. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Hatami, M.; Ganji, D.D. Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Tech. 2013, 246, 327–336. [Google Scholar] [CrossRef]
- Kumar, R.N.; Suresha, S.; Gowda, R.J.; Megalamani, S.B.; Prasannakumara, B.C. Exploring the impact of magnetic dipole on the radiative nanofluid flow over a stretching sheet by means of KKL model. Pramana J. Phys. 2021, 95, 180. [Google Scholar] [CrossRef]
- Kumar, R.S.V.; Dhananjaya, P.G.; Kumar, R.N.; Gowda, R.J.P.; Prasannakumara, B.C. Modeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reaction. Int. J. Comput. Methods Eng. Sci. Mech. 2021, 23, 12–19. [Google Scholar] [CrossRef]
- Hayat, T.; Taseer, M.; Shehzad, S.A.; Alsaedi, A.; Al-Solamy, F. Radiative three-dimensional flow with chemical reaction. Int. J. Chem. Reactor Eng. 2016, 14, 79–91. [Google Scholar] [CrossRef]
- Sarada, K.; Gowda, R.J.P.; Sarris, I.E.; Kumar, R.N.; Prasannakumara, B.C. Effect of Magnetohydrodynamics on Heat Transfer Behaviour of a Non-Newtonian Fluid Flow over a Stretching Sheet under Local Thermal Non-Equilibrium Condition. Fluids 2021, 6, 264. [Google Scholar] [CrossRef]
- Sheikholeslami, M. Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J. Mol. Liq. 2017, 229, 137–147. [Google Scholar] [CrossRef]
- Charakopoulos, A.; Karakasidis, T.; Sarris, I.E. Analysis of magnetohydrodynamic channel flow through complex network analysis. Chaos 2021, 31, 043123. [Google Scholar] [CrossRef]
- Hamid, A.; Chu, Y.M.; Khan, M.I.; Kumar, R.N.; Gowda, R.J.P.; Prasannakumara, B.C. Critical values in axisymmetric flow of magneto-Cross nanomaterial towards a radially shrinking disk. Int. J. Mod. Phys. 2021, 35, 2150105. [Google Scholar] [CrossRef]
- Hayat, T.; Saif, R.S.; Ellahi, R.; Muhammad, T.; Ahmad, B. Numerical study for Darcy–Forchheimer flow due to a curved stretching surface with Cattaneo–Christov heat flux and homogeneous-heterogeneous reactions. Results Phys. 2017, 7, 2886–2892. [Google Scholar] [CrossRef]
- Ali, B.; Nie, Y.; Hussain, S.; Manan, A.; Sadiq, M.T. Unsteady magneto-hydrodynamic transport of rotating maxwell nanofluid flow on a stretching sheet with Cattaneo–Christov double diffusion and activation energy. Therm. Sci. Eng. Prog. 2020, 20, 100720. [Google Scholar] [CrossRef]
- Sultana, U.; Mushtaq, M.; Muhammad, T.; Albakri, A. On Cattaneo–Christov heat flux in carbon-water nanofluid flow due to stretchable rotating disk through porous media. Alex. Eng. J. 2021, 61, 3463–3474. [Google Scholar] [CrossRef]
- Reddy, M.G.; Rani, M.S.; Kumar, K.G.; Prasannakumar, B.C.; Lokesh, H.J. Hybrid dusty fluid flow through a Cattaneo–Christov heat flux model. Phys. Stat. Mech. Its Appl. 2020, 551, 123975. [Google Scholar] [CrossRef]
- Farooq, U.; Waqas, H.; Khan, M.I.; Khan, S.U.; Chu, Y.M.; Kadry, S. Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo–Christov expressions and exponential space-based heat source. Alex. Eng. J. 2021, 60, 3073–3086. [Google Scholar] [CrossRef]
- Reddy, M.G.; Kumar, K.G. Cattaneo-Christof heat flux feature on carbon nanotubes filled with micropolar liquid over a melting surface: A streamline study. Int. Commun. Heat. Mass Transf. 2021, 122, 105142. [Google Scholar] [CrossRef]
- Shah, F.; Khan, M.I.; Hayat, T.; Momani, S.; Khan, M.I. Cattaneo–Christov heat flux (CC model) in mixed convective stagnation point flow towards a Riga plate. Comput. Methods Programs Biomed. 2020, 196, 105564. [Google Scholar] [CrossRef] [PubMed]
- Wakif, A. A novel numerical procedure for simulating steady MHD convective flows of radiative Casson fluids over a horizontal stretching sheet with irregular geometry under the combined influence of temperature-dependent viscosity and thermal conductivity. Math. Probl. Eng. 2020, 2020, 1675350. [Google Scholar] [CrossRef]
- Ramesh, K.; Joshi, V. Numerical Solutions for Unsteady Flows of a Magnetohydrodynamic Jeffrey Fluid Between Parallel Plates Through a Porous Medium. Int. J. Comput. Methods Eng. Sci. Mech. 2019, 20, 1–13. [Google Scholar] [CrossRef]
- Muhammad, T.; Alsaedi, A.; Shehzad, S.A.; Hayat, T. A revised model for Darcy–Forchheimer flow of Maxwell nanofluid subject to convective boundary condition. Chin. J. Phys. 2017, 55, 963–976. [Google Scholar] [CrossRef]
- Lodhi, R.K.; Ramesh, K. Comparative study on electroosmosis modulated flow of MHD viscoelastic fluid in the presence of modified Darcy’s law. Chin. J. Phys. 2020, 68, 106–120. [Google Scholar] [CrossRef]
- Shijun, L. Homotopy analysis method: A new analytic method for nonlinear problems. Appl. Math. Mech. 1998, 19, 957–962. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T. Darcy–Forchheimer nanofluidic flow manifested with Cattaneo–Christov theory of heat and mass flux over non-linearly stretching surface. PLoS ONE 2019, 14, e0221302. [Google Scholar] [CrossRef] [PubMed]
- Rasool, G.; Chamkha, A.J.; Muhammad, T.; Shafiq, A.; Khan, I. Darcy–Forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface. Propuls. Power Res. 2020, 9, 159–168. [Google Scholar] [CrossRef]
- Wakif, A.; Animasaun, I.L.; Khan, U.; Shah, N.A.; Thumma, T. Dynamics of radiative-reactive Walters-B fluid due to mixed convection conveying gyrotactic microorganisms, tiny particles experience haphazard motion, thermo-migration, and Lorentz force. Phys. Scr. 2021, 96, 125239. [Google Scholar] [CrossRef]
- Dawar, A.; Wakif, A.; Thumma, T.; Shah, N.A. Towards a new MHD non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based Iron oxide exposed to incident solar energy. Int. Commun. Heat Mass Transf. 2022, 130, 105800. [Google Scholar] [CrossRef]
- Modest, M.F. Radiative Heat Transfer, 2nd ed.; Academic Press: San Diego, CA, USA, 2021. [Google Scholar]
- Pakdemirli, M.; Yurusoy, M. Similarity Transformations for Partial Differential Equations. SIAM Rev. 1998, 40, 96–101. [Google Scholar] [CrossRef]
K | M | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasool, G.; Shafiq, A.; Hussain, S.; Zaydan, M.; Wakif, A.; Chamkha, A.J.; Bhutta, M.S. Significance of Rosseland’s Radiative Process on Reactive Maxwell Nanofluid Flows over an Isothermally Heated Stretching Sheet in the Presence of Darcy–Forchheimer and Lorentz Forces: Towards a New Perspective on Buongiorno’s Model. Micromachines 2022, 13, 368. https://doi.org/10.3390/mi13030368
Rasool G, Shafiq A, Hussain S, Zaydan M, Wakif A, Chamkha AJ, Bhutta MS. Significance of Rosseland’s Radiative Process on Reactive Maxwell Nanofluid Flows over an Isothermally Heated Stretching Sheet in the Presence of Darcy–Forchheimer and Lorentz Forces: Towards a New Perspective on Buongiorno’s Model. Micromachines. 2022; 13(3):368. https://doi.org/10.3390/mi13030368
Chicago/Turabian StyleRasool, Ghulam, Anum Shafiq, Sajjad Hussain, Mostafa Zaydan, Abderrahim Wakif, Ali J. Chamkha, and Muhammad Shoaib Bhutta. 2022. "Significance of Rosseland’s Radiative Process on Reactive Maxwell Nanofluid Flows over an Isothermally Heated Stretching Sheet in the Presence of Darcy–Forchheimer and Lorentz Forces: Towards a New Perspective on Buongiorno’s Model" Micromachines 13, no. 3: 368. https://doi.org/10.3390/mi13030368
APA StyleRasool, G., Shafiq, A., Hussain, S., Zaydan, M., Wakif, A., Chamkha, A. J., & Bhutta, M. S. (2022). Significance of Rosseland’s Radiative Process on Reactive Maxwell Nanofluid Flows over an Isothermally Heated Stretching Sheet in the Presence of Darcy–Forchheimer and Lorentz Forces: Towards a New Perspective on Buongiorno’s Model. Micromachines, 13(3), 368. https://doi.org/10.3390/mi13030368