Editorial for the Special Issue on Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II
Conflicts of Interest
References
- Jorudas, J.; Šimukovič, A.; Dub, M.; Sakowicz, M.; Prystawko, P.; Indrišiūnas, S.; Kovalevskij, V.; Rumyantsev, S.; Knap, W.; Kašalynas, I. AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics. Micromachines 2020, 11, 1131. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Jang, W.; Yim, J.; Cha, H. Unidirectional Operation of p-GaN Gate AlGaN/GaN Heterojunction FET Using Rectifying Drain Electrode. Micromachines 2021, 12, 291. [Google Scholar] [CrossRef]
- Huang, Y.; Chiu, H.; Kao, H.; Wang, H.; Liu, C.; Huang, C.; Chen, S. High Thermal Dissipation of Normally off p-GaN Gate AlGaN/GaN HEMTs on 6-Inch N-Doped Low-Resistivity SiC Substrate. Micromachines 2021, 12, 509. [Google Scholar] [CrossRef] [PubMed]
- Alim, M.; Gaquiere, C.; Crupi, G. An Experimental and Systematic Insight into the Temperature Sensitivity for a 0.15-µm Gate-Length HEMT Based on the GaN Technology. Micromachines 2021, 12, 549. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Y.; Chang, C.; Li, L.; Jin, Y. Fabrication of All-GaN Integrated MIS-HEMTs with High Threshold Voltage Stability Using Supercritical Technology. Micromachines 2021, 12, 572. [Google Scholar] [CrossRef]
- Zagni, N.; Chini, A.; Puglisi, F.; Pavan, P.; Verzellesi, G. On the Modeling of the Donor/Acceptor Compensation Ratio in Carbon-Doped GaN to Univocally Reproduce Breakdown Voltage and Current Collapse in Lateral GaN Power HEMTs. Micromachines 2021, 12, 709. [Google Scholar] [CrossRef]
- Hsu, L.; Lai, Y.; Tu, P.; Langpoklakpam, C.; Chang, Y.; Huang, Y.; Lee, W.; Tzou, A.; Cheng, Y.; Lin, C.; et al. Development of GaN HEMTs Fabricated on Silicon, Silicon-on-Insulator, and Engineered Substrates and the Heterogeneous Integration. Micromachines 2021, 12, 1159. [Google Scholar] [CrossRef]
- Ma, C.; Tian, Y. Design and Implementation of a SiC-Based VRFB Power Conditioning System. Micromachines 2020, 11, 1099. [Google Scholar] [CrossRef]
- Ma, C.; Gu, Z. Review on Driving Circuits for Wide-Bandgap Semiconductor Switching Devices for Mid- to High-Power Applications. Micromachines 2021, 12, 65. [Google Scholar] [CrossRef]
- Ma, C.; Tsai, Z.; Ku, H.; Hsieh, C. Design and Implementation of a Flexible Photovoltaic Emulator Using a GaN-Based Synchronous Buck Converter. Micromachines 2021, 12, 1587. [Google Scholar] [CrossRef]
- Kim, S.; Oh, S.; Lee, K.; Kim, S.; Kim, K. Improved Performance of GaN-Based Light-Emitting Diodes Grown on Si (111) Substrates with NH3 Growth Interruption. Micromachines 2021, 12, 399. [Google Scholar] [CrossRef]
- Chiu, Y.; Wang, C.; Gong, D.; Li, N.; Ma, S.; Jin, Y. A Novel Ultrasonic TOF Ranging System Using AlN Based PMUTs. Micromachines 2021, 12, 284. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.; Kim, K.; Kim, H. Performance Optimization of Nitrogen Dioxide Gas Sensor Based on Pd-AlGaN/GaN HEMTs by Gate Bias Modulation. Micromachines 2021, 12, 400. [Google Scholar] [CrossRef] [PubMed]
- Thalhammer, S.; Hörner, A.; Küß, M.; Eberle, S.; Pantle, F.; Wixforth, A.; Nagel, W. GaN Heterostructures as Innovative X-ray Imaging Sensors-Change of Paradigm. Micromachines 2022, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Indrišiūnas, S.; Svirplys, E.; Jorudas, J.; Kašalynas, I. Laser Processing of Transparent Wafers with a AlGaN/GaN Heterostructures and High-Electron Mobility Devices on a Backside. Micromachines 2021, 12, 407. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, Z.; Shi, H.; Song, Q.; Xu, Z.; Li, M.; Hou, Y.; Zhang, Z. Dual Laser Beam Asynchronous Dicing of 4H-SiC Wafer. Micromachines 2021, 12, 1331. [Google Scholar] [CrossRef]
- Shi, M.; Qiu, T.; Tang, B.; Zhang, G.; Yao, R.; Xu, W.; Chen, J.; Fu, X.; Ning, H.; Peng, J. Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochromism. Micromachines 2021, 12, 80. [Google Scholar] [CrossRef]
- Yao, R.; Fu, X.; Li, W.; Zhou, S.; Ning, H.; Tang, B.; Wei, J.; Cao, X.; Xu, W.; Peng, J. Bias Stress Stability of Solution-Processed Nano Indium Oxide Thin Film Transistor. Micromachines 2021, 12, 111. [Google Scholar] [CrossRef]
- Kim, D.; Schweitz, M.; Koo, S. Effect of Gas Annealing on the Electrical Properties of Ni/AlN/SiC. Micromachines 2021, 12, 283. [Google Scholar] [CrossRef]
- Kean Ping, L.; Mohamed, M.; Kumar Mondal, A.; Mohamad Taib, M.; Samat, M.; Berhanuddin, D.; Menon, P.; Bahru, R. First-Principles Studies for Electronic Structure and Optical Properties of Strontium Doped β-Ga2O3. Micromachines 2021, 12, 348. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.; Zhao, J.; Sun, Z.; Lu, Y.; Liu, T.; Zhang, J. Effect of High-Temperature Nitridation and Buffer Layer on Semi-Polar (10–13) AlN Grown on Sapphire by HVPE. Micromachines 2021, 12, 1153. [Google Scholar] [CrossRef] [PubMed]
- Fathy, M.; Gad, S.; Anis, B.; Kashyout, A. Crystal Growth of Cubic and Hexagonal GaN Bulk Alloys and Their Thermal-Vacuum-Evaporated Nano-Thin Films. Micromachines 2021, 12, 1240. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Sun, M.; Chen, J.; Yan, X.; He, Z.; Zhang, J.; Sun, W. Improvement of Crystal Quality of AlN Films with Different Polarities by Annealing at High Temperature. Micromachines 2022, 13, 129. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verzellesi, G. Editorial for the Special Issue on Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II. Micromachines 2022, 13, 403. https://doi.org/10.3390/mi13030403
Verzellesi G. Editorial for the Special Issue on Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II. Micromachines. 2022; 13(3):403. https://doi.org/10.3390/mi13030403
Chicago/Turabian StyleVerzellesi, Giovanni. 2022. "Editorial for the Special Issue on Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II" Micromachines 13, no. 3: 403. https://doi.org/10.3390/mi13030403
APA StyleVerzellesi, G. (2022). Editorial for the Special Issue on Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II. Micromachines, 13(3), 403. https://doi.org/10.3390/mi13030403