A Novel AlGaN/Si3N4 Compound Buffer Layer HEMT with Improved Breakdown Performances
Abstract
:1. Introduction
2. Device Structure and Mechanism
3. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, K.J.; Haberlen, O.; Lidow, A.; Tsai, C.L.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si Power Technology: Devices and Applications. IEEE Trans. Electron Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, W.; Wu, S.; Liu, C.; Xia, Y.; Li, M.; Cui, X.; Chen, T.; Zhou, Q.; Deng, X.; et al. A novel GaN-based lateral SBD with a TUG-AlGaN/GaN heterojunction. Superlattices Microstruct. 2019, 126, 174–180. [Google Scholar] [CrossRef]
- Lyu, G.; Wang, Y.; Wei, J.; Zheng, Z.; Sun, J.; Zhang, L.; Chen, K.J. A Normally-off Copackaged SiC-JFET/GaN-HEMT Cascode Device for High-Voltage and High-Frequency Applications. IEEE Trans. Power Electron. 2020, 35, 9669–9679. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Zhao, S.; Zhang, W.; Zhang, Y.; Duan, X.; Chen, J.; Hao, Y. More Than 3000 V Reverse Blocking Schottky-Drain AlGaN-Channel HEMTs with >230 MW/cm2 Power Figure-of-Merit. IEEE Electron Device Lett. 2019, 40, 1724–1727. [Google Scholar] [CrossRef]
- Xia, X.; Guo, Z.; Sun, H. Study of Normally-Off AlGaN/GaN HEMT with Microfield Plate for Improvement of Breakdown Voltage. Micromachines 2021, 12, 1318. [Google Scholar] [CrossRef] [PubMed]
- Mishra, U.K.; Parikh, P.; Wu, Y.-F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc. IEEE 2002, 90, 1022–1031. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Jiang, Q.; Yang, S.; Zhou, C.; Chen, K.J. Effective Passivation of AlGaN/GaN HEMTs by ALD-Grown AlN Thin Film. IEEE Electron Device Lett. 2012, 33, 516–518. [Google Scholar] [CrossRef]
- Khandelwal, S.; Goyal, N.; Fjeldly, T.A. A Physics-Based Analytical Model for 2DEG Charge Density in AlGaN/GaN HEMT Devices. IEEE Trans. Electron Devices 2011, 58, 3622–3625. [Google Scholar] [CrossRef]
- Nakajima, A.; Sumida, Y.; Dhyani, M.H.; Kawai, H.; Narayanan, E.M.S. GaN-Based Super Heterojunction Field Effect Transistors Using the Polarization Junction Concept. IEEE Electron Device Lett. 2011, 32, 542–544. [Google Scholar] [CrossRef]
- Yan, J.; Piao, J.; Wang, Y. An Enhancement Mode MOSFET Based on GaN-on-Silicon Platform for Monolithic OEIC. IEEE Electron Device Lett. 2020, 41, 76–79. [Google Scholar] [CrossRef]
- Tang, C.; Xie, G.; Sheng, K. Enhancement-mode GaN-on-Silicon MOS-HEMT using pure wet etch technique. In Proceedings of the 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hong Kong, China, 10–14 May 2015; pp. 233–236. [Google Scholar]
- Hickman, A.; Chaudhuri, R.; Bader, S.J.; Nomoto, K.; Lee, K.; Xing, H.G.; Jena, D. High Breakdown Voltage in RF AlN/GaN/AlN Quantum Well HEMTs. IEEE Electron Device Lett. 2019, 40, 1293–1296. [Google Scholar] [CrossRef]
- Wang, H.; Mao, W.; Zhao, S.; Chen, J.; Du, M.; Zheng, X.; Wang, C.; Zhang, C.; Zhang, J.; Hao, Y. Reverse blocking p-GaN gate AlGaN/GaN HEMTs with hybrid p-GaN ohmic drain. Superlattices Microstruct. 2021, 156, 106931. [Google Scholar] [CrossRef]
- Yang, C.; Luo, X.; Zhang, A.; Deng, S.; Ouyang, D.; Peng, F.; Wei, J.; Zhang, B.; Li, Z. AlGaN/GaN MIS-HEMT With AlN Interface Protection Layer and Trench Termination Structure. IEEE Trans. Electron Devices 2018, 65, 5203–5207. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Hao, Y.; Cao, F.; Yu, C.-H.; Fei, X.-X. TCAD Simulation of Breakdown-Enhanced AlGaN-/GaN-Based MISFET With Electrode-Connected p-i-n Diode in Buffer Layer. IEEE Trans. Electron Devices 2018, 65, 476–482. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Y.; Xin, Y.; Liu, C.; Lu, G.; Huang, Y. Improving Breakdown Voltage and Threshold Voltage Stability by Clamping Channel Potential for Short-Channel Power p-GaN HEMTs. Micromachines 2022, 13, 176. [Google Scholar] [CrossRef]
- Liu, J.; Guo, Y.; Zhang, J.; Yao, J.; Li, M.; Zhang, M.; Chen, J.; Huang, X.; Huang, C. A Novel Step–Doped Channel AlGaN/GaN HEMTs with Improved Breakdown Performance. Micromachines 2021, 12, 1244. [Google Scholar] [CrossRef]
- Dora, Y.; Chakraborty, A.; McCarthy, L.; Keller, S.; DenBaars, S.P.; Mishra, U.K. High Breakdown Voltage Achieved on AlGaN/GaN HEMTs with Integrated Slant Field Plates. IEEE Electron Device Lett. 2006, 27, 713–715. [Google Scholar] [CrossRef]
- Posthuma, N.E.; You, S.; Stoffels, S.; Liang, H.; Zhao, M.; Decoutere, S. Gate architecture design for enhancement mode p-GaN gate HEMTs for 200 and 650V applications. In Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 13–17 May 2018; pp. 188–191. [Google Scholar]
- Saito, W.; Takada, Y.; Kuraguchi, M.; Tsuda, K.; Omura, I.; Ogura, T.; Ohashi, H. High breakdown voltage AlGaN-GaN power-HEMT design and high current density switching behavior. IEEE Trans. Electron Devices 2003, 50, 2528–2531. [Google Scholar] [CrossRef]
- Soni, A.; Ajay; Shrivastava, M. Novel Drain-Connected Field Plate GaN HEMT Designs for Improved V BD–R ON Tradeoff and RF PA Performance. IEEE Trans. Electron Devices 2020, 67, 1718–1725. [Google Scholar] [CrossRef]
- Kim, J.-G.; Cho, C.; Kim, E.; Hwang, J.S.; Park, K.-H.; Lee, J.-H. High Breakdown Voltage and Low-Current Dispersion in AlGaN/GaN HEMTs with High-Quality AlN Buffer Layer. IEEE Trans. Electron Devices 2021, 68, 1513–1517. [Google Scholar] [CrossRef]
- Arulkumaran, S.; Egawa, T.; Matsui, S.; Ishikawa, H. Enhancement of breakdown voltage by AlN buffer layer thickness in AlGaN∕GaN high-electron-mobility transistors on 4in. diameter silicon. Appl. Phys. Lett. 2005, 86, 123503. [Google Scholar] [CrossRef]
- Arulkumaran, S.; Sakai, M.; Egawa, T.; Ishikawa, H.; Jimbo, T.; Shibata, T.; Asai, K.; Sumiya, S.; Kuraoka, Y.; Tanaka, M.; et al. Improved dc characteristics of AlGaN/GaN high-electron-mobility transistors on AlN/sapphire templates. Appl. Phys. Lett. 2002, 81, 1131–1133. [Google Scholar] [CrossRef]
- Abid, I.; Kabouche, R.; Bougerol, C.; Pernot, J.; Masante, C.; Comyn, R.; Cordier, Y.; Medjdoub, F. High Lateral Breakdown Voltage in Thin Channel AlGaN/GaN High Electron Mobility Transistors on AlN/Sapphire Templates. Micromachines 2019, 10, 690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umeda, H.; Suzuki, A.; Anda, Y.; Ishida, M.; Ueda, T.; Tanaka, T.; Ueda, D. Blocking-voltage boosting technology for GaN transistors by widening depletion layer in Si substrates. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 20.5.1–20.5.4. [Google Scholar]
- Tang, Z.; Huang, S.; Jiang, Q.; Liu, S.; Liu, C.; Chen, K.J. High-Voltage (600-V) Low-Leakage Low-Current-Collapse AlGaN/GaN HEMTs with AlN/SiNx Passivation. IEEE Electron Device Lett. 2013, 34, 366–368. [Google Scholar] [CrossRef]
- Lu, X.; Ma, J.; Jiang, H.; Liu, C.; Xu, P.; Lau, K.M. Fabrication and Characterization of Gate-Last Self-Aligned AlN/GaN MISHEMTs with In Situ SiNx Gate Dielectric. IEEE Trans. Electron Devices 2015, 62, 1862–1869. [Google Scholar] [CrossRef]
- Zhong, Y.; Sun, Q.; Yang, H.; Su, S.; Chen, X.; Zhou, Y.; He, J.; Gao, H.; Zhan, X.; Guo, X.; et al. Normally-off HEMTs With Regrown p-GaN Gate and Low-Pressure Chemical Vapor Deposition SiNx Passivation by Using an AlN Pre-Layer. IEEE Electron Device Lett. 2019, 40, 1495–1498. [Google Scholar] [CrossRef]
- TCAD Sentaurus Device Manual; Synopsys, Inc.: Mountain View, CA, USA, 2016.
- Hilt, O.; Knauer, A.; Brunner, F.; Bahat-Treidel, E.; Würfl, J. Normally-off AlGaN/GaN HFET with p-type Ga Gate and AlGaN buffer. In Proceedings of the 22nd International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hiroshima, Japan, 6–10 June 2010; pp. 347–350. [Google Scholar]
- Joshi, V.; Gupta, S.D.; Chaudhuri, R.R.; Shrivastava, M. Interplay between Surface and Buffer Traps in Governing Breakdown Characteristics of AlGaN/GaN HEMTs—Part II. IEEE Trans. Electron Devices 2021, 68, 80–87. [Google Scholar] [CrossRef]
- Nagarajan, V.; Chen, K.-M.; Chen, B.-Y.; Huang, G.-W.; Chuang, C.-W.; Lin, C.-J.; Anandan, D.; Wu, C.-H.; Han, P.-C.; Singh, S.K.; et al. Study of Charge Trapping Effects on AlGaN/GaN HEMTs under UV Illumination with Pulsed I-V Measurement. IEEE Trans. Device Mater. Reliab. 2020, 20, 436–441. [Google Scholar] [CrossRef]
- Joshi, V.; Shankar, B.; Tiwari, S.P.; Shrivastava, M. Dependence of avalanche breakdown on surface & buffer traps in AlGaN/GaN HEMTs. In Proceedings of the 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kamakura, Japan, 7–9 September 2017; pp. 109–112. [Google Scholar]
- Duffy, S.J.; Benbakhti, B.; Zhang, W.; Ahmeda, K.; Kalna, K.; Boucherta, M.; Mattalah, M.; Chahdi, H.O.; Bourzgui, N.E.; Soltani, A. A Parametric Technique for Trap Characterization in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2020, 67, 1924–1930. [Google Scholar] [CrossRef]
Parameters | Con-HEMT | DC-HEMT | BP-HEMT |
---|---|---|---|
Gate-to-source length, LGS (μm) | 1 | 1 | 1 |
Gate-to-drain length, LGD (μm) | 6 | 6 | 6 |
Length of p-type GaN gate (μm) | 1.4 | 1.4 | 1.4 |
Length of drain field plate (μm) | 1 | 1 | 1 |
Doping concentration of channel (cm−3) | 1 × 1015 | 1 × 1015 | 1 × 1015 |
Doping concentration of buffer (cm−3) | 1 × 1014 | 1 × 1014 | 1 × 1014 |
Doping concentration of substrate (cm−3) | 1 × 1015 | 1 × 1015 | 1 × 1015 |
Width of vertical Si3N4 layer (μm) | - | 0.15 | 0.15 |
Length of buried Si3N4 layer (μm) | - | - | 5.4 |
Thickness of buried Si3N4 layer (μm) | - | - | 1.675 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Hu, S.; Li, P.; Jiang, J.; Wang, R.; Wang, Y.; Wu, H. A Novel AlGaN/Si3N4 Compound Buffer Layer HEMT with Improved Breakdown Performances. Micromachines 2022, 13, 464. https://doi.org/10.3390/mi13030464
Guo J, Hu S, Li P, Jiang J, Wang R, Wang Y, Wu H. A Novel AlGaN/Si3N4 Compound Buffer Layer HEMT with Improved Breakdown Performances. Micromachines. 2022; 13(3):464. https://doi.org/10.3390/mi13030464
Chicago/Turabian StyleGuo, Jingwei, Shengdong Hu, Ping Li, Jie Jiang, Ruoyu Wang, Yuan Wang, and Hao Wu. 2022. "A Novel AlGaN/Si3N4 Compound Buffer Layer HEMT with Improved Breakdown Performances" Micromachines 13, no. 3: 464. https://doi.org/10.3390/mi13030464
APA StyleGuo, J., Hu, S., Li, P., Jiang, J., Wang, R., Wang, Y., & Wu, H. (2022). A Novel AlGaN/Si3N4 Compound Buffer Layer HEMT with Improved Breakdown Performances. Micromachines, 13(3), 464. https://doi.org/10.3390/mi13030464