Micro Energy Storage Systems in Energy Harvesting Applications: Analytical Evaluation towards Future Research Improvement
Abstract
:1. Introduction
- To portray a clear picture of the research trends of the history and developments in the field of MESS and RESs.
- To preview a detailed analysis of the papers in the field of MESS as a form of RESs on the basis of number of citations.
- Highlight a few effective suggestions for future improvement in MESS.
2. Surveying Methodology
2.1. Criteria to Analyze the Manuscript
- Articles considering RE, battery ESS, and ambient EH.
- Exclusion was based on the topics of (i). battery chemistry, (ii). nanostructures, (iii). electrolytic analysis, (iv). nano materials, v. ion exchange, vi. composite analysis and (vii). nanowires.
- For the analysis, manuscripts published in the years 2010 to 2021 were included.
- Only manuscripts published in the English language were selected from the Scopus database.
2.2. Selection Process
2.3. Research Trends
2.4. Data Extraction
2.5. Research Analyze and Outcomes
3. Discussion
- Nowadays, hybrid energy storage related to RE e.g., vibrational energy, thermal, electromagnetic, etc., is well known.
- The popularity of EH (2014 to 2021), energy storage (2021), and hybrid EH and ES (2018 to 2021) has increased remarkably for the application of ESS and standalone devices.
- In MESS integrated RESs, SCs are the better option for energy storage compared to batteries.
4. MESS Integrated with RESs: Issues and Challenges
4.1. Challenges Supercapacitor as MESS Integrated RESs
4.2. Thermal Issues of Batteries in MESS
4.3. Detection of Consistency
4.4. Environmental and Decarbonization Issues
4.5. Industrial Standards
5. Conclusions and Future Improvement
- The SCs two fundamental problems are energy density and cost, which must be achieved without sacrificing exponential rate performance or high cycle life.
- The batteries must contend with cyclic life as well as rapid charging and discharging. A hybrid supercapacitor-battery system is thought to be a better solution for electrical energy storage. On the other hand, energy management is a challenge in a hybrid system. This issue can be solved with the help of an expert energy management system that extends battery life, improves system efficiency, and takes advantage of RESs.
- SCs are electronic devices that hold a small amount of energy. To solve this problem, a hybrid supercapacitor-lithium-ion battery system is excellent, since it not only increases the power capacity of MESS but also delivers a high-power density and energy density.
- During peak demand situations in electrical equipment, the batteries are put under a lot of strain. The hybrid ESS, which combines SCs and batteries, is the ideal solution.
- The manufacturing of SCs electrodes utilizing waste materials is the way of future improvement, but it will take a lot of research to get the optimum results.
- This study gives researchers a lot of information which helps them to publish research papers in well-known journals in the research area of MESS.
- For the relevant studies of MESS, RES, and EH, this document includes highly referenced papers and other possible articles. The characteristics of highly-cited papers can provide some insight into key advances in MESS. Citation reviews can be beneficial to the editorial board, potential writers, and reviewers by providing information on the types of publications that the researcher is interested in. It also provides writers with information on what makes a paper one of the most-cited.
- Keywords can be used to locate recent study papers from the past. It also indicates the breadth of relevant articles that have appeared in MESS integrated RES publications. The promotion of research keywords is expected to clarify the numerous phenomena in the field of MESS.
- Examination and interpretation of the manuscript submitted to the journal publishers and editors is made simple with this analysis.
- The rise of scientific cooperation, as well as the achievements of diverse authors, universities, and countries, has resulted in a massive mutual relationship. To get an article published, the writers and co-authors must make an original, descriptive, or empirical observation with those long-standing in the profession. In less developed countries, international collaboration fosters publications with higher citation counts. Furthermore, industrialized countries frequently reap the benefits of international cooperation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reyes-Belmonte, M.A. The energy and environment connection, research trends based on a bibliometric analysis. Energy Ecol. Environ. 2021, 6, 479–495. [Google Scholar] [CrossRef]
- Ferrari, G.; Pezzuolo, A.; Nizami, A.S.; Marinello, F. Bibliometric Analysis of Trends in Biomass for Bioenergy Research. Energies 2020, 13, 3714. [Google Scholar] [CrossRef]
- Sarker, M.R.; Mohamed, R.; Saad, M.H.M.; Tahir, M.; Hussain, A.; Mohamed, A. A Hybrid Optimization Approach for the Enhancement of Efficiency of a Piezoelectric Energy Harvesting System. Electronics 2021, 10, 75. [Google Scholar] [CrossRef]
- Sarker, M.R.; Saad, M.H.M.; Olazagoitia, J.L.; Vinolas, J. Review of power converter impact of electromagnetic energy harvesting circuits and devices for autonomous sensor applications. Electronics 2021, 10, 1108. [Google Scholar] [CrossRef]
- Riaz, A.; Sarker, M.R.; Saad, M.H.M.; Mohamed, R. Review on Comparison of Different Energy Storage Technologies Used in Micro-Energy Harvesting, WSNs, Low-Cost Microelectronic Devices: Challenges and Recommendations. Sensors 2021, 21, 5041. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, H.; Yang, F.; Tong, L.; Yang, Y.; Yan, D.; Wang, C.; Ren, J.; Wu, Y. Experimental study on small power generation energy storage device based on pneumatic motor and compressed air. Energy Convers. Manag. 2021, 234, 113949. [Google Scholar] [CrossRef]
- Altin, S.; Bulut, F.; Yasar, S. The production of a low cost printing device for energy storage systems and the application for supercapacitors. J. Energy Storage 2019, 25, 100882. [Google Scholar] [CrossRef]
- Ding, Z.; Wu, W. A hybrid compression-assisted absorption thermal battery with high energy storage density/efficiency and low charging temperature. Appl. Energy 2021, 282, 116068. [Google Scholar] [CrossRef]
- Roy, P.; He, J.; Liao, Y. Cost Minimization of Battery-Supercapacitor Hybrid Energy Storage for Hourly Dispatching Wind-Solar Hybrid Power System. IEEE Access 2020, 8, 210099–210115. [Google Scholar] [CrossRef]
- Laajimi, M.; Go, Y.I. Energy storage system design for large-scale solar PV in Malaysia: Techno-economic analysis. Renew. Wind Water Sol. 2021, 8, 3. [Google Scholar] [CrossRef]
- Bai, Y.; Jantunen, H.; Juuti, J. Hybrid, multi-source, and integrated energy harvesters. Front. Mater. 2018, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Kalair, A.; Abas, N.; Saleem, M.S.; Kalair, A.R.; Khan, N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 2021, 3, e135. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Bo, L.; Li, Z. Recent progress in human body energy harvesting for smart bioelectronic system. Fundam. Res. 2021, 1, 364–382. [Google Scholar] [CrossRef]
- Lee, D.W.; Jeong, D.G.; Kim, J.H.; Kim, H.S.; Murillo, G.; Lee, G.H.; Song, H.C.; Jung, J.H. Polarization-controlled PVDF-based hybrid nanogenerator for an effective vibrational energy harvesting from human foot. Nano Energy 2020, 76, 105066. [Google Scholar] [CrossRef]
- Pusty, M.; Shirage, P.M. Insights and perspectives on graphene-PVDF based nanocomposite materials for harvesting mechanical energy. J. Alloys Compd. 2022, 904, 164060. [Google Scholar] [CrossRef]
- Gholikhani, M.; Beheshti Shirazi, S.Y.; Mabrouk, G.M.; Dessouky, S. Dual electromagnetic energy harvesting technology for sustainable transportation systems. Energy Convers. Manag. 2021, 230, 113804. [Google Scholar] [CrossRef]
- Cai, W.; Harne, R.L. Investigations on energy harvesting systems incorporating mechanical and electrical nonlinearities to charge reusable batteries. Energy Convers. Manag. 2021, 115045. [Google Scholar] [CrossRef]
- Pan, H.; Qi, L.; Zhang, Z.; Yan, J. Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review. Appl. Energy 2021, 286, 116518. [Google Scholar] [CrossRef]
- Salameh, Z. Energy Storage. Renew. Energy Syst. Des. 2014, 201–298. [Google Scholar] [CrossRef]
- Fu-Bao, W.; Bo, Y.; Ji-Lei, Y. Development of energy storage technology. In Grid-Scale Energy Storage Systems and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–15. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Aziz, U. Supercapattery: Merging of battery-supercapacitor electrodes for hybrid energy storage devices. J. Energy Storage 2022, 46, 103823. [Google Scholar] [CrossRef]
- Uchman, W.; Kotowicz, J.; Li, K.F. Evaluation of a micro-cogeneration unit with integrated electrical energy storage for residential application. Appl. Energy 2021, 282, 116196. [Google Scholar] [CrossRef]
- Hamidah, I.; Pawinanto, R.E.; Mulyanti, B.; Yunas, J. A bibliometric analysis of micro electro mechanical system energy harvester research. Heliyon 2021, 7, e06406. [Google Scholar] [CrossRef] [PubMed]
- Tarragona, J.; de Gracia, A.; Cabeza, L.F. Bibliometric analysis of smart control applications in thermal energy storage systems. A model predictive control approach. J. Energy Storage 2020, 32, 101704. [Google Scholar] [CrossRef]
- Feng, G.; Wang, G.; Li, Q.; Zhang, Y.; Li, H. Investigation of a solar heating system assisted by coupling with electromagnetic heating unit and phase change energy storage tank: Towards sustainable rural buildings in northern China. Sustain. Cities Soc. 2022, 80, 103449. [Google Scholar] [CrossRef]
- Lopez Garcia, A.J.; Sico, G.; Montanino, M.; Defoor, V.; Pusty, M.; Mescot, X.; Loffredo, F.; Villani, F.; Nenna, G.; Ardila, G. Low-Temperature Growth of ZnO Nanowires from Gravure-Printed ZnO Nanoparticle Seed Layers for Flexible Piezoelectric Devices. Nanomaterials 2021, 11, 1430. [Google Scholar] [CrossRef]
- Pusty, M.; Shirage, P.M. Gold nanoparticle–cellulose/PDMS nanocomposite: A flexible dielectric material for harvesting mechanical energy. RSC Adv. 2020, 10, 10097–10112. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Gao, Z.; Song, Z. Effect evaluation of road piezoelectric micro-energy collection-storage system based on laboratory and on-site tests. Appl. Energy 2021, 287, 116581. [Google Scholar] [CrossRef]
- Veneri, O.; Capasso, C.; Patalano, S. Experimental investigation into the effectiveness of a super-capacitor based hybrid energy storage system for urban commercial vehicles. Appl. Energy 2018, 227, 312–323. [Google Scholar] [CrossRef]
- Soltani, M.; Ronsmans, J.; Kakihara, S.; Jaguemont, J.; van den Bossche, P.; van Mierlo, J.; Omar, N. Hybrid battery/lithium-ion capacitor energy storage system for a pure electric bus for an urban transportation application. Appl. Sci. 2018, 8, 1176. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Li, Z.; Guo, Q.; Yang, X.; Nie, G. High performance organic-inorganic hybrid material with multi-color change and high energy storage capacity for intelligent supercapacitor application. J. Alloys Compd. 2021, 855, 157480. [Google Scholar] [CrossRef]
- Walter, O.; Tremel, A.; Prenzel, M.; Becker, S.; Schaefer, J. Techno-economic analysis of hybrid energy storage concepts via flowsheet simulations, cost modeling and energy system design. Energy Convers. Manag. 2020, 218, 112955. [Google Scholar] [CrossRef]
- Abdelkader, A.; Rabeh, A.; Mohamed Ali, D.; Mohamed, J. Multi-objective genetic algorithm based sizing optimization of a stand-alone wind/PV power supply system with enhanced battery/supercapacitor hybrid energy storage. Energy 2018, 163, 351–363. [Google Scholar] [CrossRef]
- Wegener, M.; Villarroel Schneider, J.; Malmquist, A.; Isalgue, A.; Martin, A.; Martin, V. Techno-economic optimization model for polygeneration hybrid energy storage systems using biogas and batteries. Energy 2021, 218, 119544. [Google Scholar] [CrossRef]
- Frazzica, A.; Brancato, V.; Caprì, A.; Cannilla, C.; Gordeeva, L.G.; Aristov, Y.I. Development of “salt in porous matrix” composites based on LiCl for sorption thermal energy storage. Energy 2020, 208, 118338. [Google Scholar] [CrossRef]
- Akba, T.; Baker, D.; Yazıcıoğlu, A.G. Modeling, transient simulations and parametric studies of parabolic trough collectors with thermal energy storage. Sol. Energy 2020, 199, 497–509. [Google Scholar] [CrossRef]
- Kumar, A.; Saha, S.K. Performance study of a novel funnel shaped shell and tube latent heat thermal energy storage system. Renew. Energy 2021, 165, 731–747. [Google Scholar] [CrossRef]
- Long, R.; Lai, X.; Liu, Z.; Liu, W. A continuous concentration gradient flow electrical energy storage system based on reverse osmosis and pressure retarded osmosis. Energy 2018, 152, 896–905. [Google Scholar] [CrossRef]
- Gil, W.; Montoya, O.D.; Garces, A. Direct power control of electrical energy storage systems: A passivity-based PI approach. Electr. Power Syst. Res. 2019, 175, 105885. [Google Scholar]
- Mao, N.; Meng, L.; Li, Y.; Hu, Z.; Chu, J. Enhanced voltage endurance capability of Ba(Zr0.2Ti0.8)O3 thin films induced by atomic-layer-deposited Al2O3 intercalations and the application in electrostatic energy storage. Ceram. Int. 2021, 47, 7720–7727. [Google Scholar] [CrossRef]
- Jiang, D.; Shi, B.; Ouyang, H.; Fan, Y.; Wang, Z.L.; Chen, Z.M.; Li, Z. A 25-year bibliometric study of implantable energy harvesters and self-powered implantable medical electronics researches. Mater. Today Energy 2020, 16, 100386. [Google Scholar] [CrossRef]
- Azam, A.; Ahmed, A.; Kamran, M.S.; Hai, L.; Zhang, Z.; Ali, A. Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace. Renew. Sustain. Energy Rev. 2021, 150, 111460. [Google Scholar] [CrossRef]
- Leicester, R.J.; Newman, V.G.; Wright, J.K. Renewable energy sources and storage. Nature 1978, 272, 518–521. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef] [PubMed]
- Sudevalayam, S.; Kulkarni, P. Energy harvesting sensor nodes: Survey and implications. IEEE Commun. Surv. Tutor. 2011, 13, 443–461. [Google Scholar] [CrossRef] [Green Version]
- Ozel, O.; Tutuncuoglu, K.; Yang, J.; Ulukus, S.; Yener, A. Transmission with Energy Harvesting Nodes in Fading Wireless Channels: Optimal Policies. IEEE J. Sel. Areas Commun. 2011, 29, 1732–1743. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fu, Z.Y.; Su, B.L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 2012, 22, 4634–4667. [Google Scholar] [CrossRef]
- Beaudin, M.; Zareipour, H.; Schellenberglabe, A.; Rosehart, W. Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy Sustain. Dev. 2010, 14, 302–314. [Google Scholar] [CrossRef]
- Bauer, S.; Bauer-Gogonea, S.; Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwödiauer, R. 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters. Adv. Mater. 2014, 26, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.K.; Zhang, R. Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Trans. Signal Process. 2012, 60, 4808–4818. [Google Scholar] [CrossRef] [Green Version]
- Dagdeviren, C.; Yang, B.D.; Su, Y.; Tran, P.L.; Joe, P.; Anderson, E.; Xia, J.; Doraiswamy, V.; Dehdashti, B.; Feng, X.; et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. USA 2014, 111, 1927–1932. [Google Scholar] [CrossRef] [Green Version]
- Ramadass, Y.K.; Chandrakasan, A.P. An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J. Solid-State Circuits 2010, 45, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Ramadass, Y.K.; Chandrakasan, A.P. A batteryless thermoelectric energy-harvesting interface circuit with 35 mV startup voltage. In Proceedings of the 2010 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 7–11 February 2010. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Ihns, M.; Li, M.; Hwang, J.Y.; Mousavi, M.F.; Chaney, L.; Lech, A.T.; Kaner, R.B. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. USA 2015, 112, 4233–4238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Wang, S.; Xie, Y.; Jing, Q.; Niu, S.; Hu, Y.; Wang, Z.L. Segmentally Structured Disk Triboelectric Nanogenerator for Harvesting Rotational Mechanical Energy. Nano Lett. 2013, 13, 2916–2923. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Dommer, M.; Chang, C.; Lin, L. Piezoelectric nanofibers for energy scavenging applications. Nano Energy 2012, 1, 356–371. [Google Scholar] [CrossRef]
- Akaydin, H.D.; Elvin, N.; Andreopoulos, Y. Energy Harvesting from Highly Unsteady Fluid Flows using Piezoelectric Materials. J. Intell. Mater. Syst. Struct. 2010, 21, 1263–1278. [Google Scholar] [CrossRef]
- Medepally, B.; Mehta, N.B. Voluntary energy harvesting relays and selection in cooperative wireless networks. IEEE Trans. Wirel. Commun. 2010, 9, 3543–3553. [Google Scholar] [CrossRef]
- Zi, Y.; Wang, J.; Wang, S.; Li, S.; Wen, Z.; Guo, H.; Wang, Z.L. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Zhang, Y.; Zhang, J.; Sun, X.; Peng, H. Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Gunduz, D.; Stamatiou, K.; Michelusi, N.; Zorzi, M. Designing intelligent energy harvesting communication systems. IEEE Commun. Mag. 2014, 52, 210–216. [Google Scholar] [CrossRef]
- Frackowiak, E.; Abbas, Q.; Béguin, F. Carbon/carbon supercapacitors. J. Energy Chem. 2013, 22, 226–240. [Google Scholar] [CrossRef]
- Ng, D.W.K.; Lo, E.S.; Schober, R. Energy-efficient resource allocation in OFDMA systems with hybrid energy harvesting base station. IEEE Trans. Wirel. Commun. 2013, 12, 3412–3427. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, H.; Zhu, G.; Lee, S.; Lin, Z.-H.; Wang, Z.L. Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies. ACS Nano 2012, 7, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Abdel-Rahman, O.; Batarseh, I. An integrated four-port DC/DC converter for renewable energy applications. IEEE Trans. Power Electron. 2010, 25, 1877–1887. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, R.; Lim, T.J. Optimal save-then-transmit protocol for energy harvesting wireless transmitters. IEEE Trans. Wirel. Commun. 2013, 12, 1196–1207. [Google Scholar] [CrossRef] [Green Version]
- Ozel, O.; Yang, J.; Ulukus, S. Optimal broadcast scheduling for an energy harvesting rechargeable transmitter with a finite capacity battery. IEEE Trans. Wirel. Commun. 2012, 11, 2193–2203. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Haines, C.S.; Li, N.; Kim, K.J.; Mun, T.J.; Choi, C.; Di, J.; Oh, Y.J.; Oviedo, J.P.; Bykova, J.; et al. Harvesting electrical energy from carbon nanotube yarn twist. Science 2017, 357, 773–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ongaro, F.; Saggini, S.; Mattavelli, P. Li-Ion battery-supercapacitor hybrid storage system for a long lifetime, photovoltaic-based wireless sensor network. IEEE Trans. Power Electron. 2012, 27, 3944–3952. [Google Scholar] [CrossRef]
- Chen, G.; Fojtik, M.; Kim, D.; Fick, D.; Park, J.; Seok, M.; Chen, M.-T.; Foo, Z.; Sylvester, D.; Blaauw, D. Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells. In Proceedings of the 2010 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 7–11 February 2010. [Google Scholar] [CrossRef]
- Gorlatova, M.; Wallwater, A.; Zussman, G. Networking low-power energy harvesting devices: Measurements and algorithms. In Proceedings of the 2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011. [Google Scholar] [CrossRef]
- Pu, X.; Hu, W.; Wang, Z.L. Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices. Small 2018, 14, 1702817. [Google Scholar] [CrossRef]
- Chai, Z.; Zhang, N.; Sun, P.; Huang, Y.; Zhao, C.; Fan, H.J.; Fan, X.; Mai, W. Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage. ACS Nano 2016, 10, 9201–9207. [Google Scholar] [CrossRef]
- Soyata, T.; Copeland, L.; Heinzelman, W. RF Energy Harvesting for Embedded Systems: A Survey of Tradeoffs and Methodology. IEEE Circuits Syst. Mag. 2016, 16, 22–57. [Google Scholar] [CrossRef]
- Dhillon, H.S.; Li, Y.; Nuggehalli, P.; Pi, Z.; Andrews, J.G. Fundamentals of heterogeneous cellular networks with energy harvesting. IEEE Trans. Wirel. Commun. 2014, 13, 2782–2797. [Google Scholar] [CrossRef]
- Ramadoss, A.; Saravanakumar, B.; Lee, S.W.; Kim, Y.-S.; Kim, S.J.; Wang, Z.L. Piezoelectric-Driven Self-Charging Supercapacitor Power Cell. ACS Nano 2015, 9, 4337–4345. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhou, J.; Deng, L.; Wen, Z. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit. Sensors 2014, 14, 3323–3341. [Google Scholar] [CrossRef] [PubMed]
- Andosca, R.; McDonald, T.G.; Genova, V.; Rosenberg, S.; Keating, J.; Benedixen, C.; Wu, J. Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens. Actuators A Phys. 2012, 178, 76–87. [Google Scholar] [CrossRef]
- Jeong, C.K.; Park, K.-I.; Son, J.H.; Hwang, G.-T.; Lee, S.H.; Park, D.Y.; Lee, H.E.; Lee, H.K.; Byun, M.; Lee, K.J. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 2014, 7, 4035–4043. [Google Scholar] [CrossRef]
- Adu-Manu, K.S.; Adam, N.; Tapparello, C.; Ayatollahi, H.; Heinzelman, W. Energy-harvesting wireless sensor networks (EH-WSNs): A review. ACM Trans. Sens. Netw. 2018, 14, 1–50. [Google Scholar] [CrossRef]
- Siddiqui, S.; Kim, D.I.; Duy, L.T.; Nguyen, M.T.; Muhammad, S.; Yoon, W.S.; Lee, N.E. High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 2015, 15, 177–185. [Google Scholar] [CrossRef]
- Son, E.J.; Kim, J.H.; Kim, K.; Park, C.B. Quinone and its derivatives for energy harvesting and storage materials. J. Mater. Chem. A 2016, 4, 11179–11202. [Google Scholar] [CrossRef]
- Aktakka, E.E.; Najafi, K. A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes. IEEE J. Solid-State Circuits 2014, 49, 2017–2029. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Chen, W.; Rasim, Y.; Salman, W.; Pan, H.; Yuan, Y.; Wang, C. A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle. Appl. Energy 2016, 178, 177–188. [Google Scholar] [CrossRef]
- Ostfeld, A.E.; Gaikwad, A.M.; Khan, Y.; Arias, A.C. High-performance flexible energy storage and harvesting system for wearable electronics. Sci. Rep. 2016, 6, 26122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, S.; Zhou, Y.S.; Wang, S.; Liu, Y.; Lin, L.; Bando, Y.; Wang, Z.L. Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy 2014, 8, 150–156. [Google Scholar] [CrossRef]
- Lechêne, B.P.; Cowell, M.; Pierre, A.; Evans, J.W.; Wright, P.K.; Arias, A.C. Organic solar cells and fully printed super-capacitors optimized for indoor light energy harvesting. Nano Energy 2016, 26, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Fan, F.R.; Jiang, T.; Wang, Z.; Tang, W.; Zhang, C.; Liu, M.; Cao, G.; Wang, Z.L. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res. 2015, 8, 3934–3943. [Google Scholar] [CrossRef]
- Moth-Poulsen, K.; Ćoso, D.; Börjesson, K.; Vinokurov, N.; Meier, S.K.; Majumdar, A.; Vollhardt, K.P.C.; Segalman, R.A. Molecular solar thermal (MOST) energy storage and release system. Energy Environ. Sci. 2012, 5, 8534–8537. [Google Scholar] [CrossRef] [Green Version]
- Chia, Y.K.; Sun, S.; Zhang, R. Energy cooperation in cellular networks with renewable powered base stations. IEEE Trans. Wirel. Commun. 2014, 13, 6996–7010. [Google Scholar] [CrossRef] [Green Version]
- Hehn, T.; Hagedorn, F.; Maurath, D.; Marinkovic, D.; Kuehne, I.; Frey, A.; Manoli, Y. A fully autonomous integrated interface circuit for piezoelectric harvesters. IEEE J. Solid-State Circuits 2012, 47, 2185–2198. [Google Scholar] [CrossRef]
- Tan, O.; Gunduz, D.; Poor, H.V. Increasing smart meter privacy through energy harvesting and storage devices. IEEE J. Sel. Areas Commun. 2013, 31, 1331–1341. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Jeerapan, I.; Tehrani, F.; Yin, L.; Silva-Lopez, C.A.; Jang, J.-H.; Joshuia, D.; Shah, R.; Liang, Y.; Xie, L.; et al. Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy Environ. Sci. 2018, 11, 3431–3442. [Google Scholar] [CrossRef]
- Yu, M.; McCulloch, W.D.; Beauchamp, D.R.; Huang, Z.; Ren, X.; Wu, Y. Aqueous Lithium–Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy. J. Am. Chem. Soc. 2015, 137, 8332–8335. [Google Scholar] [CrossRef]
- Dyatkin, B.; Presser, V.; Heon, M.; Lukatskaya, M.R.; Beidaghi, M.; Gogotsi, Y. Development of a Green Supercapacitor Composed Entirely of Environmentally Friendly Materials. ChemSusChem 2013, 6, 2269–2280. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Liu, Y.; Zhou, Y.S.; Wang, S.; Lin, L.; Wang, Z.L. Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage. IEEE Trans. Electron Devices 2015, 62, 641–647. [Google Scholar] [CrossRef]
- Krikidis, I. Relay Selection in Wireless Powered Cooperative Networks with Energy Storage. IEEE J. Sel. Areas Commun. 2015, 33, 2596–2610. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.; Zhang, Y.; Xu, Q.; Liu, J.; Qin, Y. Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy 2019, 60, 600–619. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, M.; Roscow, J.; Bao, Y.; Zhou, K.; Zhang, D.; Bowen, C.R. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications. J. Mater. Chem. A 2017, 5, 6569–6580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, X.; Ku, Z.; Zhou, D.; Zhong, Y.; Zhang, Y.; Wang, Y.; Huang, M.J.; Tu, J.; Fan, H.J. Perovskite solar cell powered electrochromic batteries for smart windows. Mater. Horiz. 2016, 3, 588–595. [Google Scholar] [CrossRef]
- Pan, G.; Ye, J.; Ding, Z. Secure Hybrid VLC-RF Systems with Light Energy Harvesting. IEEE Trans. Commun. 2017, 65, 4348–4359. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Pan, H.; Salman, W.; Yuan, Y.; Liu, Y. A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads. Energy Convers. Manag. 2016, 118, 287–294. [Google Scholar] [CrossRef]
- Fic, K.; Frackowiak, E.; Béguin, F. Unusual energy enhancement in carbon-based electrochemical capacitors. J. Mater. Chem. 2012, 22, 24213–24223. [Google Scholar] [CrossRef]
- Scalia, A.; Bella, F.; Lamberti, A.; Bianco, S.; Gerbaldi, C.; Tresso, E.; Pirri, C.F. A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration. J. Power Sources 2017, 359, 311–321. [Google Scholar] [CrossRef]
- Sarı, A.; Bicer, A.; Al-Sulaiman, F.A.; Karaipekli, A.; Tyagi, V.V. Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: Preparation and thermal energy storage properties. Energy Build. 2018, 164, 166–175. [Google Scholar] [CrossRef]
- Lei, H.; Xu, M.; Ansari, I.S.; Pan, G.; Qaraqe, K.A.; Alouini, M.S. On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Trans. Green Commun. Netw. 2017, 1, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lin, Z.-H.; Niu, S.; Lin, L.; Xie, Y.; Pradel, K.C.; Wang, Z.L. Motion Charged Battery as Sustainable Flexible-Power-Unit. ACS Nano 2013, 7, 11263–11271. [Google Scholar] [CrossRef] [PubMed]
- Shigeta, R.; Sasaki, T.; Quan, D.M.; Kawahara, Y.; Vyas, R.J.; Tentzeris, M.M.; Asami, T. Ambient rf energy harvesting sensor device with capacitor-leakage-aware duty cycle control. IEEE Sens. J. 2013, 13, 2973–2983. [Google Scholar] [CrossRef]
- Ambaw, A.; Delele, M.A.; Defraeye, T.; Ho, Q.T.; Opara, L.U.; Nicolaï, B.M.; Verboven, P. The use of CFD to characterize and design post-harvest storage facilities: Past, present and future. Comput. Electron. Agric. 2013, 93, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Zwerg, M.; Baumann, A.; Kuhn, R.; Arnold, M.; Nerlich, R.; Herzog, M.; Ledwa, R.; Sichert, C.; Rzehak, V.; Thanigai, P.; et al. An 82 μA/MHz microcontroller with embedded FeRAM for energy-harvesting applications. In Proceedings of the 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011. [Google Scholar] [CrossRef]
- Sakr, A.H.; Hossain, E. Analysis of K-Tier Uplink Cellular Networks with Ambient RF Energy Harvesting. IEEE J. Sel. Areas Commun. 2015, 33, 2226–2238. [Google Scholar] [CrossRef]
- Angrill, S.; Farreny, R.; Gasol, C.M.; Gabarrell, X.; Viñolas, B.; Josa, A.; Rieradevall, J. Environmental analysis of rainwater harvesting infrastructures in diffuse and compact urban models of Mediterranean climate. Int. J. Life Cycle Assess. 2011, 17, 25–42. [Google Scholar] [CrossRef]
- Prauzek, M.; Konecny, J.; Borova, M.; Janosova, K.; Hlavica, J.; Musilek, P. Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors 2018, 18, 2446. [Google Scholar] [CrossRef] [Green Version]
- Tutuncuoglu, K.; Yener, A.; Ulukus, S. Optimum Policies for an Energy Harvesting Transmitter under Energy Storage Losses. IEEE J. Sel. Areas Commun. 2015, 33, 467–481. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R.V.; Devasenapathy, S.; Rao, V.S.; Vazifehdan, J. Reincarnation in the Ambiance: Devices and networks with energy harvesting. IEEE Commun. Surv. Tutor. 2014, 16, 195–213. [Google Scholar] [CrossRef] [Green Version]
- Anton, S.; Farinholt, K.; Erturk, A. Piezoelectret foam–based vibration energy harvesting. J. Intell. Mater. Syst. Struct. 2014, 25, 1681–1692. [Google Scholar] [CrossRef]
- Gasnier, P.; Willemin, J.; Boisseau, S.; Despesse, G.; Condemine, C.; Gouvernet, G.; Chaillout, J.J. An autonomous piezoelectric energy harvesting IC based on a synchronous multi-shot technique. IEEE J. Solid-State Circuits 2014, 49, 1561–1570. [Google Scholar] [CrossRef]
- Hong, S.; Lee, J.; Do, K.; Lee, M.; Kim, J.H.; Lee, S.; Kim, D.-H. Stretchable Electrode Based on Laterally Combed Carbon Nanotubes for Wearable Energy Harvesting and Storage Devices. Adv. Funct. Mater. 2017, 27, 1704353. [Google Scholar] [CrossRef]
- Farhat, M.; Barambones, O.; Sbita, L. A new maximum power point method based on a sliding mode approach for solar energy harvesting. Appl. Energy 2017, 185, 1185–1198. [Google Scholar] [CrossRef]
- Wang, H.; Park, J.D.; Ren, Z. Active energy harvesting from microbial fuel cells at the maximum power point without using resistors. Environ. Sci. Technol. 2012, 46, 5247–5252. [Google Scholar] [CrossRef]
- Li, C.; Cong, S.; Tian, Z.; Song, Y.; Yu, L.; Lu, C.; Shao, Y.; Li, J.; Zou, G.; Rümmeli, M.H.; et al. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy 2019, 60, 247–256. [Google Scholar] [CrossRef]
- Song, Y.; Cheng, X.; Chen, H.; Huang, J.; Chen, X.; Han, M.; Su, Z.; Meng, B.; Song, Z.; Zhang, H. Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator. J. Mater. Chem. A 2016, 4, 14298–14306. [Google Scholar] [CrossRef]
- Chien, C.T.; Hiralal, P.; Wang, D.Y.; Huang, I.S.; Chen, C.C.; Chen, C.W.; Amaratunga, G.A. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device. Small 2015, 11, 2929–2937. [Google Scholar] [CrossRef]
- Lakshminarayana, S.; Quek, T.Q.S.; Poor, H.V. Cooperation and storage tradeoffs in power grids with renewable energy resources. IEEE J. Sel. Areas Commun. 2014, 32, 1386–1397. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y. Analysis of supercapacitor energy loss for power management in environmentally powered wireless sensor nodes. IEEE Trans. Power Electron. 2013, 28, 5391–5403. [Google Scholar] [CrossRef]
- Samson, D.; Kluge, M.; Becker, T.; Schmid, U. Wireless sensor node powered by aircraft specific thermoelectric energy harvesting. Sens. Actuators A Phys. 2011, 172, 240–244. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Zhu, Z.; Zhang, G.; Zou, T.; Zou, Z.; Zhang, S.; Zeng, D.; Xie, C. A full-sunlight-driven photocatalyst with super long-persistent energy storage ability. Sci. Rep. 2013, 3, 2409. [Google Scholar] [CrossRef] [Green Version]
- Pampal, E.S.; Stojanovska, E.; Simon, B.; Kilic, A. A review of nanofibrous structures in lithium ion batteries. J. Power Sources 2015, 300, 199–215. [Google Scholar] [CrossRef]
- Song, R.; Jin, H.; Li, X.; Fei, L.; Zhao, Y.; Huang, H.; Chan, H.L.-W.; Wang, Y.; Chai, Y. A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J. Mater. Chem. A 2015, 3, 14963–14970. [Google Scholar] [CrossRef]
- Lallart, M.; Guyomar, D. Piezoelectric conversion and energy harvesting enhancement by initial energy injection. Appl. Phys. Lett. 2010, 97, 014104. [Google Scholar] [CrossRef]
- Liu, S.; Lu, J.; Wu, Q.; Qiu, Q. Harvesting-aware power management for real-time systems with renewable energy. IEEE Trans. Very Large Scale Integr. Syst. 2012, 20, 1473–1486. [Google Scholar] [CrossRef]
- Shen, C.; Xu, S.; Xie, Y.; Sanghadasa, M.; Wang, X.; Lin, L. A Review of On-Chip Micro Supercapacitors for Integrated Self-Powering Systems. J. Microelectromech. Syst. 2017, 26, 949–965. [Google Scholar] [CrossRef]
- Amos, C.C.; Rahman, A.; Gathenya, J.M. Economic Analysis and Feasibility of Rainwater Harvesting Systems in Urban and Peri-Urban Environments: A Review of the Global Situation with a Special Focus on Australia and Kenya. Water 2016, 8, 149. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Wang, C.; Li, Z.; Sheng, X.; Lee, H.G.; Chang, N.; Yang, H. Storage-Less and Converter-Less Photovoltaic Energy Harvesting with Maximum Power Point Tracking for Internet of Things. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2016, 35, 173–186. [Google Scholar] [CrossRef]
- Michelusi, N.; Badia, L.; Carli, R.; Corradini, L.; Zorzi, M. Energy management policies for harvesting-based wireless sensor devices with battery degradation. IEEE Trans. Commun. 2013, 61, 4934–4947. [Google Scholar] [CrossRef]
- Wickenheiser, A.M.; Reissman, T.; Wu, W.J.; Garcia, E. Modeling the effects of electromechanical coupling on energy storage through piezoelectric energy harvesting. IEEE/ASME Trans. Mechatron. 2010, 15, 400–411. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, M.; Qiu, Q.; Yu, J.; Ding, B. Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 2018, 53, 726–733. [Google Scholar] [CrossRef]
- El-Damak, D.; Chandrakasan, A.P. A 10 nW–1 μW Power Management IC with Integrated Battery Management and Self-Startup for Energy Harvesting Applications. IEEE J. Solid-State Circuits 2016, 51, 943–954. [Google Scholar] [CrossRef]
- Zheng, S.; Shi, X.; Das, P.; Wu, Z.-S.; Bao, X. The Road towards Planar Microbatteries and Micro-Supercapacitors: From 2D to 3D Device Geometries. Adv. Mater. 2019, 31, 1900583. [Google Scholar] [CrossRef]
- Xiao, K.; Jiang, L.; Antonietti, M. Ion Transport in Nanofluidic Devices for Energy Harvesting. Joule 2019, 3, 2364–2380. [Google Scholar] [CrossRef]
- Allahbakhsh, A.; Arjmand, M. Graphene-based phase change composites for energy harvesting and storage: State of the art and future prospects. Carbon 2019, 148, 441–480. [Google Scholar] [CrossRef]
- Sherazi, H.H.R.; Grieco, L.A.; Boggia, G. A comprehensive review on energy harvesting MAC protocols in WSNs: Challenges and tradeoffs. Ad Hoc Netw. 2018, 71, 117–134. [Google Scholar] [CrossRef]
- Yu, G.; Chew, K.W.R.; Sun, Z.C.; Tang, H.; Siek, L. A 400 nW Single-Inductor Dual-Input-Tri-Output DC-DC Buck-Boost Converter with Maximum Power Point Tracking for Indoor Photovoltaic Energy Harvesting. IEEE J. Solid-State Circuits 2015, 50, 2758–2772. [Google Scholar] [CrossRef]
- Tao, P.; Chang, C.; Tong, Z.; Bao, H.; Song, C.; Wu, J.; Shang, W.; Deng, T. Magnetically-accelerated large-capacity solar-thermal energy storage within high-temperature phase-change materials. Energy Environ. Sci. 2019, 12, 1613–1621. [Google Scholar] [CrossRef]
- Pazhamalai, P.; Krishnamoorthy, K.; Mariappan, V.K.; Sahoo, S.; Manoharan, S.; Kim, S.-J. A High Efficacy Self-Charging MoSe2 Solid-State Supercapacitor Using Electrospun Nanofibrous Piezoelectric Separator with Ionogel Electrolyte. Adv. Mater. Interfaces 2018, 5, 1800055. [Google Scholar] [CrossRef]
- Liu, Y.; Narayanasamy, M.; Yang, C.; Shi, M.; Xie, W.; Wu, H.; Yan, C.; Hou, H.; Guo, Z. High-performance coaxial wire-shaped supercapacitors using ionogel electrolyte toward sustainable energy system. J. Mater. Res. 2019, 34, 3030–3039. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, X.; Zhang, T.; Bano, S.; Pan, H.; Qi, L.; Zhang, Z.; Yuan, Y. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. Appl. Energy 2018, 230, 52–61. [Google Scholar] [CrossRef]
- Abouzied, M.A.; Ravichandran, K.; Sanchez-Sinencio, E. A fully integrated reconfigurable self-startup RF energy-harvesting system with storage capability. IEEE J. Solid-State Circuits 2017, 52, 704–719. [Google Scholar] [CrossRef]
- Kim, S.; Chou, P.H. Size and topology optimization for supercapacitor-based sub-Watt energy harvesters. IEEE Trans. Power Electron. 2013, 28, 2068–2080. [Google Scholar] [CrossRef]
- Zhang, Q.; Agbossou, A.; Feng, Z.; Cosnier, M. Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: Theoretical analysis. Sens. Actuators A Phys. 2010, 163, 277–283. [Google Scholar] [CrossRef]
- Lee, W.K.; Schubert, M.J.W.; Ooi, B.Y.; Ho, S.J.Q. Multi-Source Energy Harvesting and Storage for Floating Wireless Sensor Network Nodes with Long Range Communication Capability. IEEE Trans. Ind. Appl. 2018, 54, 2606–2615. [Google Scholar] [CrossRef]
- Tutuncuoglu, K.; Ozel, O.; Yener, A.; Ulukus, S. Binary energy harvesting channel with finite energy storage. IEEE Int. Symp. Inf. Theory-Proc. 2013, 1591–1595. [Google Scholar] [CrossRef] [Green Version]
- Cansiz, M.; Altinel, D.; Kurt, G.K. Efficiency in RF energy harvesting systems: A comprehensive review. Energy 2019, 174, 292–309. [Google Scholar] [CrossRef]
- Tempelaar, R.; Jansen, T.L.C.; Knoester, J. Vibrational Beatings Conceal Evidence of Electronic Coherence in the FMO Light-Harvesting Complex. J. Phys. Chem. B 2014, 118, 12865–12872. [Google Scholar] [CrossRef]
- Colin, A.; Ruppel, E.; Lucia, B. A Reconfigurable Energy Storage Architecture for Energy-harvesting Devices. In Proceedings of the ASPLOS’18: Architectural Support for Programming Languages and Operating Systems, Williamsburg, VA, USA, 24–28 March 2018. [Google Scholar] [CrossRef]
- Dong, P.; Rodrigues, M.T.F.; Zhang, J.; Borges, R.S.; Kalaga, K.; Reddy, A.L.M.; Silva, G.G.; Ajayan, P.M.; Lou, J. A flexible solar cell/supercapacitor integrated energy device. Nano Energy 2017, 42, 181–186. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, Q.T.; Jin, S.; Zhu, H. Optimal harvest-use-store strategy for energy harvesting wireless systems. IEEE Trans. Wirel. Commun. 2015, 14, 698–710. [Google Scholar] [CrossRef]
- Lehtimäki, S.; Li, M.; Salomaa, J.; Pörhönen, J.; Kalanti, A.; Tuukkanen, S.; Heljo, P.; Halonen, K.; Lupo, D. Performance of printable supercapacitors in an RF energy harvesting circuit. Int. J. Electr. Power Energy Syst. 2014, 58, 42–46. [Google Scholar] [CrossRef]
- Sarker, M.R.; Julai, S.; Sabri, M.F.M.; Said, S.M.; Islam, M.M.; Tahir, M. Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. Sens. Actuators A Phys. 2019, 300, 111634. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, F.; Huang, S.; Wang, S.; Niu, Z.; Chen, J. A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 2020, 11, 2199. [Google Scholar] [CrossRef]
- Mansø, M.; Petersen, A.U.; Wang, Z.; Erhart, P.; Nielsen, M.B.; Moth-Poulsen, K. Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times. Nat. Commun. 2018, 9, 1945. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Jiang, T.; Zhang, L.; Chen, X.; Gao, Z.; Wang, Z.L. Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage. ACS Appl. Mater. Interfaces 2016, 8, 21398–21406. [Google Scholar] [CrossRef] [PubMed]
- Kimizuka, N.; Yanai, N.; Morikawa, M. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly. Langmuir 2016, 32, 12304–12322. [Google Scholar] [CrossRef]
- Chen, X.; Villa, N.S.; Zhuang, Y.; Chen, L.; Wang, T.; Li, Z.; Kong, T. Stretchable Supercapacitors as Emergent Energy Storage Units for Health Monitoring Bioelectronics. Adv. Energy Mater. 2020, 10, 1902769. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, M.; Shirvanimoghaddam, K.; Abolhasani, M.M.; Farhangi, M.; Zahiri Barsari, V.; Liu, H.; Dohler, M.; Naebe, M. Towards a Green and Self-Powered Internet of Things Using Piezoelectric Energy Harvesting. IEEE Access 2019, 7, 94533–94556. [Google Scholar] [CrossRef]
- Newell, D.; Duffy, M. Review of Power Conversion and Energy Management for Low-Power, Low-Voltage Energy Harvesting Powered Wireless Sensors. IEEE Trans. Power Electron. 2019, 34, 9794–9805. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J.; Tian, W.; Shahidehpour, M.; Krishnamurthy, M. Energy Harvesting for the Electrification of Railway Stations: Getting a charge from the regenerative braking of trains. IEEE Electrif. Mag. 2014, 2, 39–48. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Rasim, Y.; Wang, C.; Du, B.; Yuan, Y. Design, modelling and practical tests on a high-voltage kinetic energy harvesting (EH) system for a renewable road tunnel based on linear alternators. Appl. Energy 2016, 164, 152–161. [Google Scholar] [CrossRef]
- Tarelho, J.P.G.; Soares dos Santos, M.P.; Ferreira, J.A.F.; Ramos, A.; Kopyl, S.; Kim, S.O.; Hong, S.; Kholkin, A. Graphene-based materials and structures for energy harvesting with fluids—A review. Mater. Today 2018, 21, 1019–1041. [Google Scholar] [CrossRef]
- He, Z.; Gao, B.; Li, T.; Liao, J.; Liu, B.; Liu, X.; Wang, C.; Feng, Z.; Gu, Z. Piezoelectric-Driven Self-Powered Patterned Electrochromic Supercapacitor for Human Motion Energy Harvesting. ACS Sustain. Chem. Eng. 2018, 7, 1745–1752. [Google Scholar] [CrossRef]
- Miao, L.; Song, Z.; Zhu, D.; Li, L.; Gan, L.; Liu, M. Ionic Liquids for Supercapacitive Energy Storage: A Mini-Review. Energy Fuels 2021, 35, 8443–8455. [Google Scholar] [CrossRef]
- Chen, X.; Gao, H.; Tang, Z.; Dong, W.; Li, A.; Wang, G. Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization. Energy Environ. Sci. 2020, 13, 4498–4535. [Google Scholar] [CrossRef]
- Mohamed, R.; Sarker, M.R.; Mohamed, A. An optimization of rectangular shape piezoelectric energy harvesting cantilever beam for micro devices. Int. J. Appl. Electromagn. Mech. 2016, 50, 537–548. [Google Scholar] [CrossRef]
- Wu, L.; Li, Y.; Fu, Z.; Su, B.-L. Hierarchically structured porous materials: Synthesis strategies and applications in energy storage. Natl. Sci. Rev. 2020, 7, 1667–1701. [Google Scholar] [CrossRef]
- Sarker, M.R.; Mohamed, R.; Saad, M.H.M.; Mohamed, A. DSPACE Controller-based enhanced piezoelectric energy harvesting system using PI-lightning search algorithm. IEEE Access 2019, 7, 3610–3626. [Google Scholar] [CrossRef]
- Sultana, A.; Alam, M.M.; Ghosh, S.K.; Middya, T.R.; Mandal, D. Energy harvesting and self-powered microphone application on multifunctional inorganic-organic hybrid nanogenerator. Energy 2019, 166, 963–971. [Google Scholar] [CrossRef]
- Huang, C.; Lv, S.; Gao, A.; Ling, J.; Yi, F.; Hao, J.; Wang, M.; Luo, Z.; Shu, D. Boosting the energy density of supercapacitors by designing both hollow NiO nanoparticles/nitrogen-doped carbon cathode and nitrogen-doped carbon anode from the same precursor. Chem. Eng. J. 2022, 431, 134083. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Yang, Q.; Li, L.; Ying, Y.; Shi, W. Novel CoZnNi oxyphosphide-based electrode with high hydroxyl ion adsorption capacity for ultra-high volumetric energy density asymmetric supercapacitor. J. Colloid Interface Sci. 2022, 610, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Zhi, M.; Fan, R.; Yang, X.; Zheng, L.; Yue, S.; Liu, Q.; He, Y. Recent research progress on phase change materials for thermal management of lithium-ion batteries. J. Energy Storage 2022, 45, 103694. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, X.; Liu, L.; Liang, J.; Liu, W. Polymer/expanded graphite-based flexible phase change material with high thermal conductivity for battery thermal management. J. Clean. Prod. 2022, 331, 130014. [Google Scholar] [CrossRef]
- Zhang, C.; Bao, J.; Gao, W.; Lu, H. Facile electrochemical oxidation of activated carbon at low voltage for supercapacitors. Mater. Lett. 2021, 298, 129976. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Ruan, D.; Shi, Q.; Zhang, F.; Ren, Q.; Shi, Z. Water-based synthesis of spiro-(1,1′)-bipyrrolidinium bis(fluorosulfonyl)imide electrolyte for high-voltage and low-temperature supercapacitor. Chem. Eng. J. 2019, 373, 1012–1019. [Google Scholar] [CrossRef]
- Hannan, M.A.; Wali, S.B.; Ker, P.J.; Rahman, M.S.A.; Mansor, M.; Ramachandaramurthy, V.K.; Muttaqi, K.M.; Mahlia, T.M.I.; Dong, Z.Y. Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues. J. Energy Storage 2021, 42, 103023. [Google Scholar] [CrossRef]
- Hannan, M.A.; Faisal, M.; Jern Ker, P.; Begum, R.A.; Dong, Z.Y.; Zhang, C. Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications. Renew. Sustain. Energy Rev. 2020, 131, 110022. [Google Scholar] [CrossRef]
- Naseri, F.; Karimi, S.; Farjah, E.; Schaltz, E. Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques. Renew. Sustain. Energy Rev. 2021, 155, 111913. [Google Scholar] [CrossRef]
Rank | Ref | Author Name | Article DOI | Impact Factor | Type of Energy Storage | Keywords | Abbreviated Name | Publisher | Publishing Year | Country | Number of Citation |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | [44] | Wang | 10.1039/c5cs00580a | 54.564 | Capacitor energy storage | ES, EH | CSR | Royal soc chemistry | 2016 | England | 1928 |
2 | [45] | Sudevalayam | 10.1109/SURV.2011.060710.00094 | 25.249 | Battery energy storage | ES, EH | SURV | IEEE | 2011 | USA | 1275 |
3 | [46] | Ozel | 10.1109/JSAC.2011.110921 | 9.144 | Battery energy storage | ES, EH | JSAC | IEEE | 2011 | USA | 891 |
4 | [47] | Li | 10.1002/adfm.201200591 | 18.808 | Hybrid energy storage system | ES, EH | ADFM | WILEY | 2012 | Germany | 676 |
5 | [48] | Beaudin | 10.1016/j.esd.2010.09.007 | 5.223 | Electrical energy storage | ES, RES | ESD | Elsevier | 2010 | Netherlands | 667 |
6 | [49] | Bauer | 10.1002/adma.201303349 | 30.849 | Hybrid energy storage system | ESS, EH, RES | ADMA | WILEY | 2014 | Germany | 574 |
7 | [50] | Ho | 10.1109/TSP.2012.2199984 | 4.931 | Battery energy storage | ES, EH | TSP | IEEE | 2012 | USA | 553 |
8 | [51] | Dagdeviren | 10.1073/pnas.1317233111 | 11.205 | Hybrid energy storage system | ESS, EH, RES | PNAS | Natl Acad Sciences | 2014 | USA | 527 |
9 | [52] | Ramadass | 10.1109/JSSC.2009.2034442 | 5.013 | Capacitor energy storage | ESS, EH, RES | JSSC | IEEE | 2010 | USA | 408 |
10 | [53] | Ramadass | 10.1109/JSSC.2010.2074090 | - | Capacitor energy storage | ESS, EH, RES | JSSC | IEEE | 2011 | USA | 393 |
11 | [54] | El-Kady | 10.1073/pnas.1420398112 | 11.205 | Hybrid energy storage system | ESS, EH, RES | PNAS | Natl Acad Sciences | 2015 | USA | 359 |
12 | [55] | Lin | 10.1021/nl4013002 | 11.189 | Hybrid energy storage system | EH, RES | Nl | Amer Chemical Soc | 2013 | USA | 331 |
13 | [56] | Chang | 10.1016/j.nanoen.2012.02.003 | 17.881 | Hybrid energy storage system | EH, RES | NANOEN | Elsevier | 2012 | Netherlands | 290 |
14 | [57] | Akaydin | 10.1177/1045389x10366317 | 2.569 | Hybrid energy storage system | ES, AS | JIMSS | Sage | 2010 | England | 284 |
15 | [58] | Medepally | 10.1109/TWC.2010.091510.100447 | 7.016 | Hybrid energy storage system | EH, RES | TWC | IEEE | 2010 | USA | 280 |
16 | [59] | Zi | 10.1038/ncomms10987 | 14.919 | Hybrid energy storage system | EH, RES | NCOMMS | Nature | 2016 | Germany | 245 |
17 | [60] | Sun | 10.1038/natrevmats.2017.23 | 66.308 | Hybrid energy storage system | EH, ES | NATREVMATS | Nature | 2017 | Germany | 241 |
18 | [61] | Gunduz | 10.1109/MCOM.2014.6710085 | 9.619 | Hybrid energy storage system | EH, ES | MCOM | IEEE | 2014 | USA | 238 |
19 | [62] | Frackowiak | 10.1016/S2095-4956(13)60028-5 | 9.676 | Supercapacitors energy storage | EH, ES | EC | ELSEVIER | 2013 | Netherlands | 218 |
20 | [63] | Ng | 10.1109/TWC.2013.052813.121589 | 7.016 | Hybrid energy storage system | RES, EH | TWC | IEEE | 2013 | USA | 195 |
21 | [64] | Yang | 10.1021/nn305247x | 15.881 | Hybrid energy storage system | RES, EH | NN | Amer Chemical Soc | 2013 | USA | 193 |
22 | [65] | Qian | 10.1109/TPEL.2010.2043119 | 6.153 | Hybrid energy storage system | RES, EH | TPEL | IEEE | 2010 | USA | 190 |
23 | [66] | Luo | 10.1109/TWC.2013.012413.120488 | 7.016 | Hybrid energy storage system | EH, ES | TWC | IEEE | 2013 | USA | 182 |
24 | [67] | Ozel | 10.1109/TWC.2012.032812.110813 | 7.016 | Battery energy storage | RES, EH | TWC | IEEE | 2012 | USA | 175 |
25 | [68] | Kim | 10.1126/science.aam8771 | 47.728 | Capacitor energy storage | EH, ES | SCIENCE | Amer Assoc advancement science | 2017 | USA | 173 |
26 | [69] | Ongaro | 10.1109/TPEL.2012.2189022 | 6.153 | Hybrid energy storage system | RES, EH, ES | TPEL | IEEE | 2012 | USA | 170 |
27 | [70] | Chen | 10.1109/ISSCC.2010.5433921 | - | Hybrid energy storage system | RES, ES | ISSCC | IEEE | 2010 | USA | 158 |
28 | [71] | Gorlatova | 10.1109/TMC.2012.154 | - | Hybrid energy storage system | EH, ES | TWC | IEEE | 2013 | USA | 154 |
29 | [72] | Pu | 10.1002/smll.201702817 | 13.281 | Battery energy storage | EH, ES | SMLL | WILEY | 2018 | Germany | 150 |
30 | [73] | Chai | 10.1021/acsnano.6b05293 | 15.881 | Supercapacitors energy storage | EH, ES | ACSNANO | Amer Chemical Soc | 2016 | USA | 146 |
31 | [74] | Soyata | 10.1109/MCAS.2015.2510198 | 3.071 | Hybrid energy storage | RES, EH | MCAS | IEEE | 2016 | USA | 142 |
32 | [75] | Dhillon | 10.1109/TWC.2014.040214.131201 | 7.016 | Battery energy storage | EH, ES | TWC | IEEE | 2014 | USA | 142 |
33 | [76] | Ramadoss | 10.1021/acsnano.5b00759 | 15.881 | Supercapacitors energy storage | EH, ES | ACSNANO | Amer Chemical Soc | 2015 | USA | 141 |
34 | [77] | Yu | 10.3390/s140203323 | 3.576 | Hybrid energy storage | EH, ES | Sensors | MDPI | 2014 | Switzerland | 132 |
35 | [78] | Andosca | 10.1016/j.sna.2012.02.028 | 3.407 | Battery energy storage | EH, ES, RES | SNA | Elsevier | 2012 | Switzerland | 132 |
36 | [79] | Jeong | 10.1039/c4ee02435d | 38.532 | Hybrid energy storage | EH, RES | EES | Royal Soc Chemistry | 2014 | England | 129 |
37 | [80] | Adu-Manu | 10.1145/3183338 | 2.253 | Battery energy storage | EH, RES | TSN | Assoc Computing Machinery | 2018 | USA | 128 |
38 | [81] | Siddiqui | 10.1016/j.nanoen.2015.04.030 | 17.881 | Battery energy storage | EH, ES, RES | NANOEN | Elsevier | 2015 | Netherlands | 128 |
39 | [82] | Son | 10.1039/c6ta03123d | 12.732 | Battery energy storage | EH, ES | MCA | Royal Soc Chemistry | 2016 | England | 127 |
40 | [83] | Aktakka | 10.1109/JSSC.2014.2331953 | 5.013 | Ultra-capacitor energy storage | EH, RES | JSSC | IEEE | 2014 | USA | 122 |
41 | [84] | Zhang | 10.1016/j.apenergy.2016.06.054 | 9.746 | Supercapacitors energy storage | EH, ES, RES | APENERGY | Elsevier | 2016 | England | 121 |
42 | [85] | Ostfeld | 10.1038/srep26122 | 4.380 | Battery energy storage | EH, ES, RES | SREP | Nature | 2016 | Germany | 121 |
43 | [86] | Niu | 10.1016/j.nanoen.2014.05.018 | 17.881 | Hybrid energy storage | EH, RES | NANOEN | Elsevier | 2014 | Netherlands | 121 |
44 | [87] | Lechêne | 10.1016/j.nanoen.2016.06.017 | 17.881 | Supercapacitors energy storage | EH, ES, RES | NANOEN | Elsevier | 2016 | Netherlands | 171 |
45 | [88] | Luo | 10.1007/s12274-015-0894-8 | 8.897 | Supercapacitors energy storage | EH, ES, RES | NR | Tsinghua Univ Press | 2015 | China | 141 |
46 | [89] | Moth-Poulsen | 10.1039/c2ee22426g | 38.532 | Thermal energy storage | ES, RES | EE | Royal Soc Chemistry | 2012 | England | 111 |
47 | [90] | Chia | 10.1109/TWC.2014.2339845 | 7.016 | Hybrid energy storage | ES, RES | TWC | IEEE | 2014 | USA | 108 |
48 | [91] | Hehn | 10.1109/JSSC.2012.2200530 | 5.013 | Capacitor energy storage | EH, ES | JSSC | IEEE | 2012 | USA | 107 |
49 | [92] | Tan | 10.1109/JSAC.2013.130715 | 9.144 | Hybrid energy storage | EH, ES | JSAC | IEEE | 2013 | USA | 106 |
50 | [93] | Lv | 10.1039/c8ee02792g | 38.532 | Hybrid energy storage | EH, ES | EE | Royal Soc Chemistry | 2018 | England | 101 |
51 | [94] | Yu | 10.1021/jacs.5b03626 | 15.419 | Battery energy storage | EH, ES, RES | JACS | Amer Chemical Soc | 2015 | USA | 101 |
52 | [95] | Dyatkin | 10.1002/cssc.201300852 | 8.928 | Supercapacitors energy storage | ES, RES | CSSC | WILEY | 2013 | Germany | 101 |
53 | [96] | Niu | 10.1109/TED.2014.2377728 | 2.917 | Capacitor energy storage | EH, ES, RES | TED | IEEE | 2015 | USA | 100 |
54 | [97] | Krikidis | 10.1109/JSAC.2015.2479015 | 9.144 | Battery energy storage | ES, RES | JSAC | IEEE | 2015 | USA | 99 |
55 | [98] | Yun | 10.1016/j.nanoen.2019.03.074 | 17.881 | Hybrid energy storage | EH, ES, RES | NANOEN | Elsevier | 2019 | Netherlands | 98 |
56 | [99] | Zhang | 10.1039/c7ta00967d | 12.732 | Capacitor energy storage | EH, ES | JMCA | Royal Soc Chemistry | 2017 | England | 98 |
57 | [100] | Xia | 10.1039/c6mh00159a | 13.266 | Battery energy storage | ES, RES | MH | Royal Soc Chemistry | 2016 | England | 98 |
58 | [101] | Pan | 10.1109/INFCOM.2011.5934952 | 5.083 | Hybrid energy storage | ES, EH | INFCOM | IEEE | 2017 | USA | 95 |
59 | [102] | Zhang | 10.1016/j.enconman.2016.04.012 | 9.709 | Supercapacitors energy storage | EH, ES, RES | ENCONMAN | Elsevier | 2016 | England | 95 |
60 | [103] | Fic | 10.1039/c2jm35711a | 6.626 | Capacitor energy storage | ES, RES | JM | Royal Soc Chemistry | 2012 | England | 94 |
61 | [104] | Scalia | 10.1016/j.jpowsour.2017.05.072 | 9.127 | Supercapacitors energy storage | ES, RES | JPOWSOUR | Elsevier | 2017 | Netherlands | 93 |
62 | [105] | Sarı | 10.1016/j.enbuild.2018.01.009 | 5.879 | Thermal energy storage | ES, RES | ENBUILD | Elsevier | 2018 | Switzerland | 91 |
63 | [106] | Lei | 10.1109/TGCN.2017.2684827 | 6.06 | Battery energy storage | EH, RES | TGCN | IEEE | 2017 | USA | 91 |
64 | [107] | Wang | 10.1021/nn4050408 | 15.881 | Battery energy storage | ES, RES | NN | Amer Chemical Soc | 2013 | USA | 91 |
65 | [108] | Shigeta | 10.1109/JSEN.2013.2264931 | 3.301 | Capacitor energy storage | ES, EH | JSEN | IEEE | 2013 | USA | 87 |
66 | [109] | Ambaw | 10.1016/j.compag.2012.05.009 | 5.565 | Hybrid energy storage | ES, EH | COMPAG | Elsevier | 2013 | England | 85 |
67 | [110] | Zwerg | 10.1109/ISSCC.2011.5746342 | - | Battery energy storage | ES, EH | ISSCC | IEEE | 2011 | USA | 84 |
68 | [111] | Sakr | 10.1109/JSAC.2015.2435358 | 9.144 | Battery energy storage | EH, RES | JSAC | IEEE | 2015 | USA | 83 |
69 | [112] | Angrill | 10.1007/s11367-011-0330-6 | 4.141 | Hybrid energy storage | EH, RES | IJLCA | SPRINGER | 2012 | Germany | 83 |
70 | [113] | Prauzek | 10.3390/s18082446 | 3.576 | Hybrid energy storage | EH, ES, RES | S | MDPI | 2018 | Switzerland | 82 |
71 | [114] | Tutuncuoglu | 10.1109/JSAC.2015.2391511 | 9.144 | Battery energy storage | EH, ES | JSAC | IEEE | 2015 | USA | 78 |
72 | [115] | Prasad | 10.1109/SURV.2013.062613.00235 | 25.249 | Hybrid energy storage | EH, RES | SURV | IEEE | 2014 | USA | 77 |
73 | [116] | Anton | 10.1177/1045389X14541501 | 2.569 | Capacitor energy storage | EH, ES | JIMSS | SAGE | 2014 | England | 76 |
74 | [117] | Gasnier | 10.1109/JSSC.2014.2325555 | 5.013 | Capacitor energy storage | EH, ES | JSSC | IEEE | 2014 | USA | 76 |
75 | [118] | Hong | 10.1002/adfm.201704353 | 18.808 | Hybrid energy storage | EH, ES | ADFM | WILEY | 2017 | Germany | 75 |
76 | [119] | Farhat | 10.1016/j.apenergy.2016.03.055 | 9.746 | Hybrid energy storage | EH, RES | APENERGY | Elsevier | 2017 | England | 75 |
77 | [120] | Wang | 10.1021/es300313d | 9.028 | Capacitor energy storage | EH, RES | EST | Amer Chemical Soc | 2012 | USA | 74 |
78 | [121] | Li | 10.1016/j.nanoen.2019.03.061 | 17.881 | Capacitor energy storage | ES, RES | NANOEN | Elsevier | 2019 | Netherlands | 73 |
79 | [122] | Song | 10.1039/c6ta05816g | 12.732 | Supercapacitors energy storage | ES, RES | JMCA | Royal Soc Chemistry | 2016 | England | 72 |
80 | [123] | Chien | 10.1002/smll.201403383 | 13.281 | Supercapacitors energy storage | ES, RES | SMLL | WILEY | 2015 | Germany | 72 |
81 | [124] | Lakshminarayana | 10.1109/JSAC.2014.2332093 | 9.144 | Battery energy storage | ES, RES | JSAC | IEEE | 2014 | USA | 72 |
82 | [125] | Yang | 10.1109/TPEL.2013.2238683 | 6.153 | Supercapacitors energy storage | ES, RES | TPEL | IEEE | 2013 | USA | 72 |
83 | [126] | Samson | 10.1016/j.sna.2010.12.020 | 3.407 | Capacitor energy storage | ES, RES, EH | SNA | Elsevier | 2011 | Switzerland | 72 |
84 | [127] | Li | 10.1038/srep02409 | 4.380 | Hybrid energy storage | ES, RES | SREP | Nature | 2013 | Germany | 71 |
85 | [128] | Pampal | 10.1016/j.jpowsour.2015.09.059 | 9.127 | Battery energy storage | ES, RES | JPOWSOUR | Elsevier | 2015 | Netherlands | 70 |
86 | [129] | Song | 10.1039/c5ta03349g | 12.732 | Supercapacitors energy storage | ES, RES, EH | JMCA | Royal Soc Chemistry | 2015 | England | 70 |
87 | [130] | Lallart | 10.1063/1.3462304 | 3.791 | Hybrid energy storage | ES, EH | APL | Amer Inst Physics | 2010 | USA | 69 |
88 | [131] | Liu | 10.1109/TVLSI.2011.2159820 | 2.312 | Ultra-capacitor energy storage | RES, EH | TVLSI | IEEE | 2012 | USA | 68 |
89 | [132] | Shen | 10.1109/JMEMS.2017.2723018 | 2.417 | Supercapacitors energy storage | ES, EH | JMEMS | IEEE | 2017 | USA | 68 |
90 | [133] | Amos | 10.3390/w8040149 | 3.103 | Hybrid energy storage | RES, EH | W | MDPI | 2016 | Switzerland | 66 |
91 | [134] | Wang | 10.1109/TCAD.2015.2446937 | 2.807 | Battery energy storage | ES, RES, EH | TCAD | IEEE | 2016 | USA | 64 |
92 | [135] | Michelusi | 10.1109/TCOMM.2013.111113.130022 | 5.083 | Battery energy storage | ES, EH | TCOMM | IEEE | 2013 | USA | 64 |
93 | [136] | Wickenheiser | 10.1109/TMECH.2009.2027318 | 5.303 | Capacitor energy storage | ES, EH | TMECH | IEEE | 2010 | USA | 63 |
94 | [137] | Li | 10.1016/j.nanoen.2018.09.039 | 17.881 | Capacitor energy storage | ES, EH | NANOEN | Elsevier | 2018 | Netherlands | 62 |
95 | [138] | El-Damak | 10.1109/JSSC.2015.2503350 | 5.013 | Battery energy storage | ES, EH | JSSC | IEEE | 2016 | USA | 62 |
96 | [139] | Zheng | 10.1002/adma.201900583 | 30.849 | Supercapacitors energy storage | ES, RES, EH | ADMA | WILEY | 2019 | Germany | 61 |
97 | [140] | Xiao | 10.1016/j.joule.2019.09.005 | 41.248 | Supercapacitors energy storage | RES, EH | JOULE | Cell Press | 2019 | USA | 61 |
98 | [141] | Allahbakhsh | 10.1016/j.carbon.2019.04.009 | 9.594 | Supercapacitors energy storage | ES, EH | CARBON | Elsevier | 2019 | England | 60 |
99 | [142] | Sherazi | 10.1016/j.adhoc.2018.01.004 | 4.111 | Hybrid energy storage | RES, EH | ADHOC | Elsevier | 2018 | Netherlands | 60 |
100 | [143] | Yu | 10.1109/JSSC.2015.2476379 | 5.013 | Capacitor energy storage | RES, EH | JSSC | IEEE | 2015 | USA | 60 |
101 | [144] | Tao | 10.1039/c9ee00542k | 38.532 | Thermal energy storage | RES, ES | EE | Royal Soc Chemistry | 2019 | England | 59 |
102 | [145] | Pazhamalai | 10.1002/admi.201800055 | 6.147 | Supercapacitors energy storage | EH, ES | ADMI | WILEY | 2018 | USA | 58 |
103 | [146] | Liu | 10.1557/jmr.2019.234 | 3.089 | Supercapacitors energy storage | RES, ES | JMR | SPRINGER | 2019 | Germany | 57 |
104 | [147] | Wang | 10.1016/j.apenergy.2018.08.080 | 9.746 | Supercapacitors energy storage | RES, EH | APENERGY | Elsevier | 2018 | England | 56 |
105 | [148] | Abouzied | 10.1109/JSSC.2016.2633985 | 5.013 | Capacitor energy storage | RES, EH, ES | JSSC | IEEE | 2017 | USA | 56 |
106 | [149] | Kim | 10.1109/TPEL.2012.2203147 | 6.153 | Supercapacitors energy storage | RES, EH, ES | TPEL | IEEE | 2013 | USA | 56 |
107 | [150] | Agbossou | 10.1016/j.sna.2010.06.027 | 3.407 | Battery energy storage | RES, EH | SNA | Elsevier | 2010 | Switzerland | 56 |
108 | [151] | Lee | 10.1109/TIA.2018.2799158 | 3.654 | Battery energy storage | RES, EH, ES | TIA | IEEE | 2018 | USA | 54 |
109 | [152] | Tutuncuoglu | 10.1109/ISIT.2013.6620495 | - | Battery energy storage | EH, ES | ISIT | IEEE | 2013 | USA | 54 |
110 | [153] | Cansiz | 10.1016/j.energy.2019.02.100 | 7.147 | Hybrid energy storage | RES, EH | Energy | Elsevier | 2019 | England | 54 |
111 | [154] | Tempelaar | 10.1021/jp510074q | 2.991 | Hybrid energy storage | EH, ES | JP | Amer Chemical Soc | 2014 | USA | 53 |
112 | [155] | Colin | 10.1145/3173162.3173210 | - | Hybrid energy storage | EH, ES | ACM | Assoc Computing Machinery | 2018 | USA | 50 |
113 | [156] | Dong | 10.1016/j.nanoen.2017.10.035 | 17.881 | Supercapacitors energy storage | EH, ES | NANOEN | Elsevier | 2017 | Netherlands | 50 |
114 | [157] | Yuan | 10.1109/TWC.2014.2358215 | 7.016 | Battery energy storage | EH, ES | TWC | IEEE | 2015 | USA | 50 |
115 | [158] | Lehtimäki | 10.1016/j.ijepes.2014.01.004 | 4.630 | Supercapacitors energy storage | EH, ES | IJEPES | Elsevier | 2014 | England | 50 |
116 | [159] | Mahidur | 10.1016/j.sna.2019.111634 | 3.407 | Hybrid energy storage | EH, ES | SNA | Elsevier | 2019 | Switzerland | 50 |
117 | [160] | Zhang | 10.1038/s41467-020-16039-5 | 14.919 | Battery energy storage | EH, ES | NCOMMS | Nature | 2020 | Germany | 49 |
118 | [161] | Mansø | 10.1038/s41467-018-04230-8 | 14.919 | Hybrid energy storage | RES, EH, ES | NCOMMS | Nature | 2018 | Germany | 49 |
119 | [162] | Yao | 10.1021/acsami.6b07697 | 9.229 | Capacitor energy storage | RES, EH, ES | ACSAMI | Amer Chemical Soc | 2016 | USA | 48 |
120 | [163] | Kimizuka | 10.1021/acs.langmuir.6b03363 | 3.882 | Solar Energy Storage | RES, EH, ES | LANGMUIR | Amer Chemical Soc | 2016 | USA | 47 |
121 | [164] | Chen | 10.1002/aenm.201902769 | 29.368 | Supercapacitors energy storage | RES, EH, ES | AENM | WILEY | 2020 | Germany | 46 |
122 | [165] | Shirvanimoghaddam | 10.1109/ACCESS.2019.2928523 | 3.367 | Hybrid energy storage | EH, ES | ACCESS | IEEE | 2019 | USA | 46 |
123 | [166] | Newell | 10.1109/TPEL.2019.2894465 | 6.153 | Hybrid energy storage | EH, ES | TPEL | IEEE | 2019 | USA | 45 |
124 | [167] | Jiang | 10.1109/MELE.2014.2333561 | 3.217 | Hybrid energy storage | RES, EH, ES | MELE | IEEE | 2014 | USA | 44 |
125 | [168] | Zhang | 10.1016/j.apenergy.2015.11.096 | 9.746 | Hybrid energy storage | RES, EH | APENERGY | Elsevier | 2016 | England | 42 |
126 | [169] | Tarelho | 10.1016/j.mattod.2018.06.004 | 31.041 | Supercapacitors energy storage | EH, ES | MATTOD | Elsevier | 2018 | England | 36 |
127 | [170] | He | 10.1021/acssuschemeng.8b05606 | 8.198 | Supercapacitors energy storage | EH, ES | ACSSUSCHEMENG | Amer Chemical Soc | 2019 | USA | 32 |
128 | [171] | Miao | 10.1021/acs.energyfuels.1c00321 | 3.605 | Supercapacitors energy storage | EH, ES | ENERGYFUELS | Amer Chemical Soc | 2021 | USA | 26 |
129 | [172] | Chen | 10.1039/d0ee01355b | 38.532 | Thermal energy storage system | EH, ES | EE | Royal Soc Chemistry | 2020 | England | 23 |
130 | [173] | Mohamed | 10.3233/JAE-150129 | 0.706 | Hybrid energy storage system | EH | JAE | IOS Press | 2016 | Netherlands | 21 |
Rank | Keywords | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Frequency |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Energy Harvesting | [57,58] | [45,46,71,110,126] | [50,130] | [66,92] | [61,75,86,115,116,167] | [81,96,111,123,143,157] | [74,82,134,138,162] | [60,99,106,118] | [113,137,142,147,151,169] | [98,108,140,141,153,166] | - | [5] | 45 |
2 | Energy storage | [48] | - | - | [127,152] | - | [97,114] | [59,85] | - | [38,155] | [39] | [35,174] | [6,22,25,40] | 16 |
3 | Renewable energy | [65] | - | [64,131] | - | [124] | - | [73,87] | [119] | - | - | - | - | 8 |
4 | Capacitor | - | - | [103] | [108] | - | - | [44] | - | - | [121] | - | - | 4 |
5 | Supercapacitor | - | - | - | [62,95,125,149] | [158] | [54,76,129] | [122] | [104,156] | [145] | [7,146] | [164] | [171] | 16 |
6 | Piezoelectric | [52,136] | - | - | - | [51,117] | - | [173] | - | - | [159,165,175] | - | [3] | 9 |
7 | Thermal energy storage | - | - | [89] | - | - | - | [163] | [105,161] | [144] | [24,36,172] | [37] | 9 | |
8 | Battery | [53,70] | - | [67] | [107,135] | - | [94] | [100,138] | - | - | - | [160] | [8] | 10 |
9 | Micro EH and storage | [150] | - | [120] | - | [83] | [88] | - | [132] | - | [139,176] | - | [22,23,28] | 10 |
10 | Hybrid EH and energy storage | - | - | [69] | [63] | - | [54] | - | [101] | [29,30,33,93] | - | [9,32] | [8,31,34] | 13 |
11 | Electromagnetic | - | - | - | - | - | - | [102,168] | - | [170] | - | - | [4] | 4 |
Rank | DIO Number | Article Title | Last 5 Years Citation | Total Citation Rank | Ref No. | ACY | Advantage | Research Gap |
---|---|---|---|---|---|---|---|---|
1 | 10.1039/c5cs00580a | Electrochemical capacitors: mechanism, materials, systems, characterization and applications | 1911 | 1 | [44] | 382 | SCs have several orders of magnitude better energy storage capacity than normal dielectric capacitors. They have a high power density, long cyclic stability, and a high level of safety. | The energy storage capability of SCs is less than batteries. |
2 | 10.1109/SURV.2011.060710.00094 | Energy harvesting sensor nodes: Survey and implications | 792 | 2 | [45] | 158 | By utilizing recharge opportunities and adjusting performance settings based on current and expected energy levels, EH sensor nodes have the ability to solve the competing design goals of lifetime and performance. | Lifetime, cost, reliability, sensing, and transmission coverage are all difficult parameters to achieve in sensor networks using battery-powered nodes. |
3 | 10.1109/JSAC.2011.110921 | Transmission with Energy Harvesting Nodes in Fading Wireless Channels: Optimal Policies | 366 | 7 | [46] | 72 | Wireless systems with recharged nodes have a much longer lifespan and are more environmentally friendly. The ability of the nodes to capture energy during the duration of the transmission is a distinguishing feature of these systems. | The disadvantage is point-to-point optimization in data transmission in a wireless fading channel, which limits battery capacity. |
4 | 10.1002/adfm.201200591 | Hierarchically structured porous materials for energy conversion and storage | 377 | 6 | [174] | 75 | The established linkages between hierarchically porous structures and their energy conversion and storage performances can aid in the development of innovative structures with enhanced features. | The cost of hierarchically porous structures materials is high. |
5 | 10.1016/j.esd.2010.09.007 | Energy storage for mitigating the variability of renewable electricity sources: An updated review | 400 | 4 | [48] | 80 | Renewable resources cost is low. | Each challenge given by variable renewable resources necessitates a unique set of electrical energy storage features to handle the problem, and no single electrical energy storage technology consistently outperforms the others in varied applications. |
6 | 10.1002/adma.201303349 | 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters | 446 | 3 | [49] | 93 | EH is also favorable for Robotic applications. | Compex designing. |
7 | 10.1109/TSP.2012.2199984 | Optimal energy allocation for wireless communications with energy harvesting constraints | 268 | 9 | [50] | 54 | Considering channel conditions and uncertainty of RES the output can be maximized. | Renewable energy harvesting is an unreliable source of energy for sending data over a time-selective fading channel. |
8 | 10.1073/pnas.1317233111 | Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm | 399 | 5 | [51] | 80 | Piezoelectric MESS may generate significant electrical power from the motions of inside organs, up to and above levels relevant for implant application. | Voltage output is also affected by the size of the heart, the velocity at which it beats, and the force with which it contracts. |
9 | 10.1109/JSSC.2009.2034442 | An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor | 228 | 10 | [52] | 46 | Piezoelectric EH of ambient vibration energy is a prominent technique that can possibly deliver 10–100 s of µW of accessible power. | The interface circuitry of conventional piezoelectric harvesters is one of their major drawbacks. |
10 | 10.1073/pnas.1420398112 | Engineering three-dimensional hybrid SCs and microsupercapacitors for high-performance integrated energy storage | 325 | 8 | [54] | 65 | SCs overcome the limitation of energy densities. | It is necessary to develop a simple technique for fabricating supercapacitor arrays for high-voltage applications. |
Different Micro Energy-Storage System | Objectives | Advantages | Disadvantages | References |
---|---|---|---|---|
Battery Storage System |
|
|
| [45,50,80,81,82] |
Capacitor storage system |
|
|
| [44,52,53,68,99] |
Thermal storage system |
|
|
| [89,105,144,172] |
Super-capacitorstorage system |
|
|
| [62,73,76,84,87,88,95] |
Research | Number of Publication | Years | Citation Range |
---|---|---|---|
Modelling, problem identification and simulation performance evolution | 47 | 2010–2021 | 21–553 |
Development and experimental prototype | 35 | 2010–2021 | 23–408 |
Optimization method for sizing and enhance efficiency of EH system | 15 | 2013–2021 | 26–331 |
Review | 14 | 2010–2021 | 60–1275 |
Technical overview | 5 | 2012–2019 | 68–98 |
Research Scope | References | Numbers | Citation Range |
---|---|---|---|
Micro energy harvesting system | [45,46,47,50,51,57,58,60,61,63,67,71,74,75,81,82,83,86,87,92,93,96,98,99,106,108,111,113,114,116,117,118,120,130,137,138,140,141,142,147,150,151,152,153,157,158,162,166,167,168,169,170] | 52 | 32–1275 |
Micro energy storage system | [44,85,97,114,127,152,155] | 6 | 50–1928 |
Piezoelectric energy harvesting system | [51,52,56,57,76,77,78,81,91,99,117,130,136,145,159,165,170,173] | 18 | 21–527 |
Solar energy source | [64,73,87,94,100,104,119,121,144,156,161,163] | 12 | 47–193 |
Thermal energy storage system | [44,89,105,161,172] | 5 | 23–111 |
Electromagnetic energy harvesting | [102] | 1 | 95 |
Battery energy storage | [67,69,70,107,135,138,160] | 7 | 49–175 |
Renewable energy source | [48,65,84,90,124,131,147,168] | 8 | 42–667 |
Photovoltaic Energy Harvesting | [69,123,134,143] | 4 | 60–170 |
Thermoelectric energy-harvesting | [53,126,150] | 3 | 56–393 |
Rank | Author’s Name | Institution | Country | Frequency of Manuscript | Citations | h-Index |
---|---|---|---|---|---|---|
1 | Liu | Tsinghua University | China | 13 | 5478 | 33 |
2 | Wang | Fudan University | China | 4 | 243 | 9 |
3 | Hu | University of Pittsburgh | USA | 6 | 2964 | 27 |
4 | Yang, H | Tsinghua University | China | 4 | 10,945 | 48 |
5 | Xie, M | Tianjin University | China | 5 | 859 | 14 |
6 | A. Yener | Ohio State University | USA | 4 | 14,275 | 55 |
7 | Yu Li | Wuhan University of Technology | China | 5 | 6323 | 38 |
8 | Zareipour | University of Calgary | Canada | 5 | 6821 | 41 |
9 | Ho | Institute for Infocomm Research | Singapore | 2 | 5302 | 22 |
10 | Dagdeviren | Massachusetts Institute of Technology | USA | 2 | 4352 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarker, M.R.; Saad, M.H.M.; Riaz, A.; Lipu, M.S.H.; Olazagoitia, J.L. Micro Energy Storage Systems in Energy Harvesting Applications: Analytical Evaluation towards Future Research Improvement. Micromachines 2022, 13, 512. https://doi.org/10.3390/mi13040512
Sarker MR, Saad MHM, Riaz A, Lipu MSH, Olazagoitia JL. Micro Energy Storage Systems in Energy Harvesting Applications: Analytical Evaluation towards Future Research Improvement. Micromachines. 2022; 13(4):512. https://doi.org/10.3390/mi13040512
Chicago/Turabian StyleSarker, Mahidur R., Mohamad Hanif Md Saad, Amna Riaz, M. S. Hossain Lipu, and José Luis Olazagoitia. 2022. "Micro Energy Storage Systems in Energy Harvesting Applications: Analytical Evaluation towards Future Research Improvement" Micromachines 13, no. 4: 512. https://doi.org/10.3390/mi13040512
APA StyleSarker, M. R., Saad, M. H. M., Riaz, A., Lipu, M. S. H., & Olazagoitia, J. L. (2022). Micro Energy Storage Systems in Energy Harvesting Applications: Analytical Evaluation towards Future Research Improvement. Micromachines, 13(4), 512. https://doi.org/10.3390/mi13040512