Cancer Diagnostics and Early Detection Using Electrochemical Aptasensors
Abstract
:1. Introduction
2. Label-Based Electrochemical Aptasensors
2.1. Redox-Active Molecules
2.2. Enzyme-Based Aptasensors
2.3. Nanomaterials-Based Aptasensors
3. Label-Free Electrochemical Aptasensors
4. Cancer Diagnosis and Early Detection
4.1. Early-Stage Detection of Lung Cancer
4.2. Early-Stage Detection of Breast Cancer
4.3. Early-Stage Detection of Prostate Cancer
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mathers, C.; Fat, D.M.; Boerma, J.T. The Global Burden of Disease: 2004 Update; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Available online: https://www.who.int/news/item/03-02-2022-world-cancer-day-closing-the-care-gap (accessed on 7 February 2022).
- Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science 2011, 331, 1559–1564. [Google Scholar] [CrossRef]
- Wu, J.; Fu, Z.; Yan, F.; Ju, H. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. TrAC Trends Anal. Chem. 2007, 26, 679–688. [Google Scholar] [CrossRef]
- Yang, Z.; Kasprzyk-Hordern, B.; Goggins, S.; Frost, C.G.; Estrela, P. A novel immobilization strategy for electrochemical detection of cancer biomarkers: DNA-directed immobilization of aptamer sensors for sensitive detection of prostate specific antigens. Analyst 2015, 140, 2628–2633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Zhou, H.; Wei, W.; Hua, X.; Wang, L.; Zhou, Z.; Liu, S. Signal amplification cytosensor for evaluation of drug-induced cancer cell apoptosis. Anal. Chem. 2012, 84, 1894–1899. [Google Scholar] [CrossRef]
- Arya, S.K.; Estrela, P. Recent Advances in Enhancement Strategies for Electrochemical ELISA-Based Immunoassays for Cancer Biomarker Detection. Sensors 2018, 18, 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Wang, J.; Wu, L.; Huang, Y.; Zhang, Y.; Zhu, M.; Wang, Y.; Zhu, Z.; Yang, C. Trends in miniaturized biosensors for point-of-care testing. TrAC Trends Anal. Chem. 2020, 122, 115701. [Google Scholar] [CrossRef]
- Mohammadinejad, A.; Kazemi Oskuee, R.; Eivazzadeh-Keihan, R.; Rezayi, M.; Baradaran, B.; Maleki, A.; Hashemzaei, M.; Mokhtarzadeh, A.; de la Guardia, M. Development of biosensors for detection of alpha-fetoprotein: As a major biomarker for hepatocellular carcinoma. TrAC Trends Anal. Chem. 2020, 130, 115961. [Google Scholar] [CrossRef]
- Thakare, S.; Shaikh, A.; Bodas, D.; Gajbhiye, V. Application of dendrimer-based nanosensors in immunodiagnosis. Colloids Surf. B Biointerfaces 2022, 209, 112174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, Z.; Han, Y.; Fan, L.; Guo, Y. Sandwich electrochemical carcinoembryonic antigen aptasensor based on signal amplification of polydopamine functionalized graphene conjugate Pd-Pt nanodendrites. Bioelectrochemistry 2021, 142, 107947. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Bolandi, N.; Hemmati, A.; Eyvazi, S.; Ghasemzadeh, S.; Baradaran, B.; Oroojalian, F.; Reza Majidi, M.; de la Guardia, M.; Mokhtarzadeh, A. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchem. J. 2022, 177, 107248. [Google Scholar] [CrossRef]
- Fernandez, L.; Bustos, R.H.; Zapata, C.; Garcia, J.; Jauregui, E.; Ashraf, G.M. Immunogenicity in Protein and Peptide Based-Therapeutics: An Overview. Curr. Protein Pept. Sci. 2018, 19, 958–971. [Google Scholar] [CrossRef] [PubMed]
- Shabalina, A.V.; Sharko, D.O.; Glazyrin, Y.E.; Bolshevich, E.A.; Dubinina, O.V.; Kim, A.M.; Veprintsev, D.V.; Lapin, I.N.; Zamay, G.S.; Krat, A.V.; et al. Development of Electrochemical Aptasensor for Lung Cancer Diagnostics in Human Blood. Sensors 2021, 21, 7851. [Google Scholar] [CrossRef] [PubMed]
- Jovčevska, I.; Muyldermans, S. The Therapeutic Potential of Nanobodies. BioDrugs 2020, 34, 11–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, F.A.; Stickler, M.M.; Razo, J.; DuBridge, R.B. The immunogenicity of humanized and fully human antibodies: Residual immunogenicity resides in the CDR regions. MAbs 2010, 2, 256–265. [Google Scholar] [CrossRef] [Green Version]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.L.; Joyce, G.F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990, 344, 467–468. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Kashefi-Kheyrabadi, L.; Mehrgardi, M.A. Design and construction of a label free aptasensor for electrochemical detection of sodium diclofenac. Biosens. Bioelectron. 2012, 33, 184–189. [Google Scholar] [CrossRef]
- Kashefi-Kheyrabadi, L.; Mehrgardi, M.A. Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate. Biosens. Bioelectron. 2012, 37, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Kashefi-Kheyrabadi, L.; Mehrgardi, M.A.; Wiechec, E.; Turner, A.P.; Tiwari, A. Ultrasensitive detection of human liver hepatocellular carcinoma cells using a label-free aptasensor. Anal. Chem. 2014, 86, 4956–4960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascini, M. Aptamers in Bioanalysis; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Shangguan, D.; Cao, Z.; Meng, L.; Mallikaratchy, P.; Sefah, K.; Wang, H.; Li, Y.; Tan, W. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J. Proteome Res. 2008, 7, 2133–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, Y.; Chen, G.; Shangguan, D.; Zhang, L.; Wan, S.; Wu, Y.; Zhang, H.; Duan, L.; Liu, C.; You, M.; et al. Generating Cell Targeting Aptamers for Nanotheranostics Using Cell-SELEX. Theranostics 2016, 6, 1440–1452. [Google Scholar] [CrossRef] [PubMed]
- Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends Anal. Chem. 2016, 79, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Katz, E.; Willner, I. Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanalysis 2003, 15, 913–947. [Google Scholar] [CrossRef]
- Andreescu, S.; Sadik, O.A. Advanced electrochemical sensors for cell cancer monitoring. Methods 2005, 37, 84–93. [Google Scholar] [CrossRef]
- De La Rica, R.; Thompson, S.; Baldi, A.; Fernandez-Sanchez, C.; Drain, C.M.; Matsui, H. Label-free cancer cell detection with impedimetric transducers. Anal. Chem. 2009, 81, 10167–10171. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Chandra, P.; Shim, Y.-B. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine–Au nanoparticle–aptamer bioconjugate. Anal. Chem. 2012, 85, 1058–1064. [Google Scholar] [CrossRef]
- Lou, B.; Zhou, Z.; Du, Y.; Dong, S. Resistance-based logic aptamer sensor for CCRF-CEM and Ramos cells integrated on microfluidic chip. Electrochem. Commun. 2015, 59, 64–67. [Google Scholar] [CrossRef]
- Jolly, P.; Tamboli, V.; Harniman, R.L.; Estrela, P.; Allender, C.J.; Bowen, J.L. Aptamer–MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens. Bioelectron. 2016, 75, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Sun, G.; Liu, F.; Lu, J.; Yu, J.; Song, X. An aptasensor for sensitive detection of human breast cancer cells by using porous GO/Au composites and porous PtFe alloy as effective sensing platform and signal amplification labels. Anal. Chim. Acta 2013, 798, 33–39. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef] [PubMed]
- Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Emrani, A.S.; Abnous, K. A Novel Electrochemical Aptasensor for Carcinoembryonic Antigen Detection Based on Target-induced Bridge Assembly. Electroanalysis 2018, 30, 1734–1739. [Google Scholar] [CrossRef]
- Wu, X.; Chen, J.; Wu, M.; Zhao, J.X. Aptamers: Active targeting ligands for cancer diagnosis and therapy. Theranostics 2015, 5, 322. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Q.; Qian, C.; Hao, N.; Xu, L.; Yao, C. Electrochemical aptasensor for mucin 1 based on dual signal amplification of poly (o-phenylenediamine) carrier and functionalized carbon nanotubes tracing tag. Biosens. Bioelectron. 2015, 64, 485–492. [Google Scholar] [CrossRef]
- Qu, L.; Xu, J.; Tan, X.; Liu, Z.; Xu, L.; Peng, R. Dual-aptamer modification generates a unique interface for highly sensitive and specific electrochemical detection of tumor cells. ACS Appl. Mater. Interfaces 2014, 6, 7309–7315. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Q.; Revzin, A. An aptasensor for electrochemical detection of tumor necrosis factor in human blood. Analyst 2013, 138, 4321–4326. [Google Scholar] [CrossRef]
- Ravalli, A.; Rivas, L.; De La Escosura-Muñiz, A.; Pons, J.; Merkoçi, A.; Marrazza, G. A DNA Aptasensor for Electrochemical Detection of Vascular Endothelial Growth Factor. J. Nanosci. Nanotechnol. 2015, 15, 3411–3416. [Google Scholar] [CrossRef]
- Sun, D.; Lu, J.; Zhong, Y.; Yu, Y.; Wang, Y.; Zhang, B.; Chen, Z. Sensitive electrochemical aptamer cytosensor for highly specific detection of cancer cells based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. Biosens. Bioelectron. 2016, 75, 301–307. [Google Scholar] [CrossRef]
- Yi, Z.; Li, X.-Y.; Gao, Q.; Tang, L.-J.; Chu, X. Aptamer-aided target capturing with biocatalytic metal deposition: An electrochemical platform for sensitive detection of cancer cells. Analyst 2013, 138, 2032–2037. [Google Scholar] [CrossRef]
- Huang, J.-Y.; Zhao, L.; Lei, W.; Wen, W.; Wang, Y.-J.; Bao, T.; Xiong, H.-Y.; Zhang, X.-H.; Wang, S.-F. A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and DNAzyme-assisted signal amplification strategy. Biosens. Bioelectron. 2018, 99, 28–33. [Google Scholar] [CrossRef]
- Lee, J.H. Conjugation approaches for construction of aptamer-modified nanoparticles for application in imaging. Curr. Top. Med. Chem. 2013, 13, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Gedi, V.; Kim, Y.-P. Detection and characterization of cancer cells and pathogenic bacteria using aptamer-based nano-conjugates. Sensors 2014, 14, 18302–18327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilkhani, H.; Sarparast, M.; Noori, A.; Bathaie, S.Z.; Mousavi, M.F. Electrochemical aptamer/antibody based sandwich immunosensor for the detection of EGFR, a cancer biomarker, using gold nanoparticles as a signaling probe. Biosens. Bioelectron. 2015, 74, 491–497. [Google Scholar] [CrossRef]
- Ahirwar, R.; Dalal, A.; Sharma, J.G.; Yadav, B.K.; Nahar, P.; Kumar, A.; Kumar, S. An aptasensor for rapid and sensitive detection of estrogen receptor alpha in human breast cancer. Biotechnol. Bioeng. 2019, 116, 227–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostamabadi, P.F.; Heydari-Bafrooei, E. Impedimetric aptasensing of the breast cancer biomarker HER2 using a glassy carbon electrode modified with gold nanoparticles in a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes. Microchim. Acta 2019, 186, 495. [Google Scholar] [CrossRef] [PubMed]
- Qiao, B.; Guo, Q.; Jiang, J.; Qi, Y.; Zhang, H.; He, B.; Cai, C.; Shen, J. An electrochemiluminescent aptasensor for amplified detection of exosomes from breast tumor cells (MCF-7 cells) based on G-quadruplex/hemin DNAzymes. Analyst 2019, 144, 3668–3675. [Google Scholar] [CrossRef]
- Shen, C.; Zeng, K.; Luo, J.; Li, X.; Yang, M.; Rasooly, A. Self-Assembled DNA Generated Electric Current Biosensor for HER2 Analysis. Anal. Chem. 2017, 89, 10264–10269. [Google Scholar] [CrossRef]
- Arya, S.K.; Zhurauski, P.; Jolly, P.; Batistuti, M.R.; Mulato, M.; Estrela, P. Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosens. Bioelectron. 2018, 102, 106–112. [Google Scholar] [CrossRef]
- Harahsheh, T.; Makableh, Y.F.; Rawashdeh, I.; Al-Fandi, M. Enhanced aptasensor performance for targeted HER2 breast cancer detection by using screen-printed electrodes modified with Au nanoparticles. Biomed. Microdevices 2021, 23, 46. [Google Scholar] [CrossRef]
- Cai, S.; Chen, M.; Liu, M.; He, W.; Liu, Z.; Wu, D.; Xia, Y.; Yang, H.; Chen, J. A signal amplification electrochemical aptasensor for the detection of breast cancer cell via free-running DNA walker. Biosens. Bioelectron. 2016, 85, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Hasanzadeh, M.; Razmi, N.; Mokhtarzadeh, A.; Shadjou, N.; Mahboob, S. Aptamer based assay of plated-derived grow factor in unprocessed human plasma sample and MCF-7 breast cancer cell lysates using gold nanoparticle supported α-cyclodextrin. Int. J. Biol. Macromol. 2018, 108, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Song, J.; Lu, Y.; Davis, J.J.; Gao, F.; Luo, X. Electrochemical Aptasensor for Ultralow Fouling Cancer Cell Quantification in Complex Biological Media Based on Designed Branched Peptides. Anal. Chem. 2019, 91, 8334–8340. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Chen, T.; Chen, W.; Chen, G.; Xu, L.; Zhang, L.; Zhang, X.; Sun, W.; Lan, J.; Lin, X.; et al. A dual-modal aptasensor based on a multifunctional acridone derivate for exosomes detection. Anal. Chim. Acta 2022, 1191, 339279. [Google Scholar] [CrossRef] [PubMed]
- Akhtartavan, S.; Karimi, M.; Sattarahmady, N.; Heli, H. An electrochemical signal-on apta-cyto-sensor for quantitation of circulating human MDA-MB-231 breast cancer cells by transduction of electro-deposited non-spherical nanoparticles of gold. J. Pharm. Biomed. Anal. 2020, 178, 112948. [Google Scholar] [CrossRef]
- Bharti, A.; Rana, S.; Dahiya, D.; Agnihotri, N.; Prabhakar, N. An electrochemical aptasensor for analysis of MUC1 using gold platinum bimetallic nanoparticles deposited carboxylated graphene oxide. Anal. Chim. Acta 2020, 1097, 186–195. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Lu, L.; Yang, X.; Xia, J.; Zhang, F.; Wang, Z. Competitive electrochemical aptasensor based on a cDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1. Anal. Chim. Acta 2020, 1094, 18–25. [Google Scholar] [CrossRef]
- Farzin, L.; Shamsipur, M.; Samandari, L.; Sheibani, S. Signalling probe displacement electrochemical aptasensor for malignant cell surface nucleolin as a breast cancer biomarker based on gold nanoparticle decorated hydroxyapatite nanorods and silver nanoparticle labels. Microchim. Acta 2018, 185, 154. [Google Scholar] [CrossRef]
- Motaghi, H.; Ziyaee, S.; Mehrgardi, M.A.; Kajani, A.A.; Bordbar, A.-K. Electrochemiluminescence detection of human breast cancer cells using aptamer modified bipolar electrode mounted into 3D printed microchannel. Biosens. Bioelectron. 2018, 118, 217–223. [Google Scholar] [CrossRef]
- Safavipour, M.; Kharaziha, M.; Amjadi, E.; Karimzadeh, F.; Allafchian, A. TiO2 nanotubes/reduced GO nanoparticles for sensitive detection of breast cancer cells and photothermal performance. Talanta 2020, 208, 120369. [Google Scholar] [CrossRef]
- Shafiei, F.; Saberi, R.S.; Mehrgardi, M.A. A label-free electrochemical aptasensor for breast cancer cell detection based on a reduced graphene oxide-chitosan-gold nanoparticle composite. Bioelectrochemistry 2021, 140, 107807. [Google Scholar] [CrossRef]
- Meirinho, S.G.; Dias, L.G.; Peres, A.M.; Rodrigues, L.R. Electrochemical aptasensor for human osteopontin detection using a DNA aptamer selected by SELEX. Anal. Chim. Acta 2017, 987, 25–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meirinho, S.G.; Dias, L.G.; Peres, A.M.; Rodrigues, L.R. Development of an electrochemical RNA-aptasensor to detect human osteopontin. Biosens. Bioelectron. 2015, 71, 332–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Luo, J.; Liu, J.; Sun, S.; Xiong, Y.; Ma, Y.; Yan, S.; Yang, Y.; Yin, H.; Cai, X. Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosens. Bioelectron. 2019, 136, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Huang, J.-Y.; Bao, T.; Zhou, J.; Xia, H.-X.; Zhang, X.-H.; Wang, S.-F.; Zhao, Y.-D. Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-streptavidin nanomatrix: Highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen. Biosens. Bioelectron. 2016, 83, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.-K.; Chao, C.-H.; Yeh, Y.-S. A Graphene-PEDOT:PSS Modified Paper-Based Aptasensor for Electrochemical Impedance Spectroscopy Detection of Tumor Marker. Sensors 2020, 20, 1372. [Google Scholar] [CrossRef]
- Zamay, G.S.; Zamay, T.N.; Kolovskaya, O.S.; Krat, A.V.; Glazyrin, Y.E.; Dubinina, A.V.; Zamay, A.S. Development of a biosensor for electrochemical detection of tumor-associated proteins in blood plasma of cancer patients by aptamers. Dokl. Biochem. Biophys. 2016, 466, 70–73. [Google Scholar] [CrossRef]
- Zamay, G.S.; Zamay, T.N.; Kolovskii, V.A.; Shabanov, A.V.; Glazyrin, Y.E.; Veprintsev, D.V.; Krat, A.V.; Zamay, S.S.; Kolovskaya, O.S.; Gargaun, A.; et al. Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples. Sci. Rep. 2016, 6, 34350. [Google Scholar] [CrossRef] [Green Version]
- Amouzadeh Tabrizi, M.; Shamsipur, M.; Farzin, L. A high sensitive electrochemical aptasensor for the determination of VEGF165 in serum of lung cancer patient. Biosens. Bioelectron. 2015, 74, 764–769. [Google Scholar] [CrossRef]
- Xue, S.; Yi, H.; Jing, P.; Xu, W. Dendritic Pt@ Au nanowires as nanocarriers and signal enhancers for sensitive electrochemical detection of carcinoembryonic antigen. RSC Adv. 2015, 5, 77454–77459. [Google Scholar] [CrossRef]
- Quan, H.; Zuo, C.; Li, T.; Liu, Y.; Li, M.; Zhong, M.; Zhang, Y.; Qi, H.; Yang, M. Electrochemical detection of carcinoembryonic antigen based on silver nanocluster/horseradish peroxidase nanocomposite as signal probe. Electrochim. Acta 2015, 176, 893–897. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Guo, Y.; Dong, C. Label-free Electrochemical Aptasensor for Carcino-embryonic Antigen Based on Ternary Nanocomposite of Gold Nanoparticles, Hemin and Graphene. Electroanalysis 2016, 28, 1023–1028. [Google Scholar] [CrossRef]
- Deng, W.; Shen, L.; Wang, X.; Yang, C.; Yu, J.; Yan, M.; Song, X. Using carbon nanotubes-gold nanocomposites to quench energy from pinnate titanium dioxide nanorods array for signal-on photoelectrochemical aptasensing. Biosens. Bioelectron. 2016, 82, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Da, H.; Liu, H.; Zheng, Y.; Yuan, R.; Chai, Y. A highly sensitive VEGF165 photoelectrochemical biosensor fabricated by assembly of aptamer bridged DNA networks. Biosens. Bioelectron. 2018, 101, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Hu, R.; Bao, T.; Zhang, X.; Wang, S. An insertion approach electrochemical aptasensor for mucin 1 detection based on exonuclease-assisted target recycling. Biosens. Bioelectron. 2015, 71, 13–17. [Google Scholar] [CrossRef]
- Wang, Q.-L.; Cui, H.-F.; Song, X.; Fan, S.-F.; Chen, L.-L.; Li, M.-M.; Li, Z.-Y. A label-free and lectin-based sandwich aptasensor for detection of carcinoembryonic antigen. Sens. Actuators B Chem. 2018, 260, 48–54. [Google Scholar] [CrossRef]
- Niu, C.; Lin, X.; Jiang, X.; Guo, F.; Liu, J.; Liu, X.; Huang, H.; Huang, Y. An electrochemical aptasensor for highly sensitive detection of CEA based on exonuclease III and hybrid chain reaction dual signal amplification. Bioelectrochemistry 2022, 143, 107986. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Zha, R.; Wang, C.; Zhang, H.; Wang, Y.; Li, C. Dual-wavelength responsive photoelectrochemical aptasensor based on ionic liquid functionalized Zn-MOFs and noble metal nanoparticles for the simultaneous detection of multiple tumor markers. Nanoscale 2021, 13, 19066–19075. [Google Scholar] [CrossRef]
- Liu, B.; Lu, L.; Hua, E.; Jiang, S.; Xie, G. Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Microchim. Acta 2012, 178, 163–170. [Google Scholar] [CrossRef]
- Jolly, P.; Zhurauski, P.; Hammond, J.L.; Miodek, A.; Liébana, S.; Bertok, T.; Tkáč, J.; Estrela, P. Self-assembled gold nanoparticles for impedimetric and amperometric detection of a prostate cancer biomarker. Sens. Actuators B Chem. 2017, 251, 637–643. [Google Scholar] [CrossRef]
- Sattarahmady, N.; Rahi, A.; Heli, H. A signal-on built in-marker electrochemical aptasensor for human prostate-specific antigen based on a hairbrush-like gold nanostructure. Sci. Rep. 2017, 7, 11238. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Yang, H.; Li, Z.; Zhang, L.; Zhu, P.; Yan, M.; Yu, J. Signal-switchable lab-on-paper photoelectrochemical aptasensing system integrated triple-helix molecular switch with charge separation and recombination regime of type-II CdTe@CdSe core-shell quantum dots. Biosens. Bioelectron. 2020, 147, 111786. [Google Scholar] [CrossRef] [PubMed]
- Raouafi, A.; Sánchez, A.; Raouafi, N.; Villalonga, R. Electrochemical aptamer-based bioplatform for ultrasensitive detection of prostate specific antigen. Sens. Actuators B Chem. 2019, 297, 126762. [Google Scholar] [CrossRef]
- Heydari-Bafrooei, E.; Shamszadeh, N.S. Electrochemical bioassay development for ultrasensitive aptasensing of prostate specific antigen. Biosens. Bioelectron. 2017, 91, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Sun, H.; Huang, Y.; Tang, Y.; Chen, Q.; Miao, P. Peptide cleavage-based electrochemical biosensor coupling graphene oxide and silver nanoparticles. Anal. Chim. Acta 2019, 1047, 45–51. [Google Scholar] [CrossRef]
- Aayanifard, Z.; Alebrahim, T.; Pourmadadi, M.; Yazdian, F.; Dinani, H.S.; Rashedi, H.; Omidi, M. Ultra pH-sensitive detection of total and free prostate-specific antigen using electrochemical aptasensor based on reduced graphene oxide/gold nanoparticles emphasis on TiO(2)/carbon quantum dots as a redox probe. Eng. Life Sci. 2021, 21, 739–752. [Google Scholar] [CrossRef]
- Xu, R.; Du, Y.; Ma, H.; Wu, D.; Ren, X.; Sun, X.; Wei, Q.; Ju, H. Photoelectrochemical aptasensor based on La(2)Ti(2)O(7)/Sb(2)S(3) and V(2)O(5) for effectively signal change strategy for cancer marker detection. Biosens. Bioelectron. 2021, 192, 113528. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, Z. Ultrasensitive detection of prostate specific antigen by electrochemical aptasensor using enzyme-free recycling amplification via target-induced catalytic hairpin assembly. Biosens. Bioelectron. 2018, 102, 316–320. [Google Scholar] [CrossRef]
- Cai, G.; Yu, Z.; Ren, R.; Tang, D. Exciton–Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS Quantum Dots/TiO2 for Photoelectrochemical Aptasensing of Prostate-Specific Antigen. ACS Sens. 2018, 3, 632–639. [Google Scholar] [CrossRef]
- Cao, J.-T.; Yang, J.-J.; Zhao, L.-Z.; Wang, Y.-L.; Wang, H.; Liu, Y.-M.; Ma, S.-H. Graphene oxide@gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen. Biosens. Bioelectron. 2018, 99, 92–98. [Google Scholar] [CrossRef]
- Argoubi, W.; Sánchez, A.; Parrado, C.; Raouafi, N.; Villalonga, R. Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. Sens. Actuators B Chem. 2018, 255, 309–315. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, H.; Shi, L.; Zheng, W.; Jing, X. Electroactive Cu2O nanoparticles and Ag nanoparticles driven ratiometric electrochemical aptasensor for prostate specific antigen detection. Sens. Actuators B Chem. 2020, 315, 128155. [Google Scholar] [CrossRef]
- Yan, R.; Lu, N.; Han, S.; Lu, Z.; Xiao, Y.; Zhao, Z.; Zhang, M. Simultaneous detection of dual biomarkers using hierarchical MoS(2) nanostructuring and nano-signal amplification-based electrochemical aptasensor toward accurate diagnosis of prostate cancer. Biosens. Bioelectron. 2022, 197, 113797. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.H.; Gou, H.; Zhao, T.; Mei, L.P.; Wang, A.J.; Feng, J.J. Ultrasensitive photoelectrochemical aptasensor for detecting telomerase activity based on Ag(2)S/Ag decorated ZnIn(2)S(4)/C(3)N(4) 3D/2D Z-scheme heterostructures and amplified by Au/Cu(2+)-boron-nitride nanozyme. Biosens. Bioelectron. 2022, 203, 114048. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Zhou, Y.G.; Poudineh, M.; Safaei, T.S.; Mohamadi, R.M.; Sargent, E.H.; Kelley, S.O. Highly Specific Electrochemical Analysis of Cancer Cells using Multi-Nanoparticle Labeling. Angew. Chem. 2014, 53, 13145–13149. [Google Scholar] [CrossRef]
- Forouzanfar, S.; Khakpour, I.; Alam, F.; Pala, N.; Wang, C. Novel application of electrochemical bipolar exfoliated graphene for highly sensitive disposable label-free cancer biomarker aptasensors. Nanoscale Adv. 2021, 3, 5948–5958. [Google Scholar] [CrossRef]
- Forouzanfar, S.; Alam, F.; Pala, N.; Wang, C. Highly sensitive label-free electrochemical aptasensors based on photoresist derived carbon for cancer biomarker detection. Biosens. Bioelectron. 2020, 170, 112598. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Lu, W.; Zhao, M.; Xiao, H.; Hu, T.; Ma, J.; Zheng, Z.; Jia, J.; Wu, H. A label-free electrochemical aptasensor based on the core–shell Cu-MOF@TpBD hybrid nanoarchitecture for the sensitive detection of PDGF-BB. Analyst 2021, 146, 979–988. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, C.; Zhang, S.; He, L.; Wang, M.; Peng, D.; Tian, J.; Fang, S. Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor. Biosens. Bioelectron. 2017, 89, 735–742. [Google Scholar] [CrossRef]
- Zhang, T.; Song, Y.; Xing, Y.; Gu, Y.; Yan, X.; Liu, H.; Lu, N.; Xu, H.; Xu, Z.; Zhang, Z.; et al. The synergistic effect of Au-COF nanosheets and artificial peroxidase Au@ZIF-8(NiPd) rhombic dodecahedra for signal amplification for biomarker detection. Nanoscale 2019, 11, 20221–20227. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, S.; Hu, C.; Cui, D.; Jia, N. An enhanced impedance cytosensor based on folate conjugated-polyethylenimine-carbon nanotubes for tumor targeting. Electrochem. Commun. 2013, 29, 4–7. [Google Scholar] [CrossRef]
- Cao, H.; Ye, D.; Zhao, Q.; Luo, J.; Zhang, S.; Kong, J. A novel aptasensor based on MUC-1 conjugated CNSs for ultrasensitive detection of tumor cells. Analyst 2014, 139, 4917–4923. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Luo, M.; Weng, Q.; Chen, L.; Chen, J.; Li, C.; Zhou, Y.; Wang, L. ZnO flower-rod/g-C3N4-gold nanoparticle-based photoelectrochemical aptasensor for detection of carcinoembryonic antigen. Anal. Bioanal. Chem. 2018, 410, 6529–6538. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Shu, J.; Liu, J.; Tang, D. Dual-Channel Photoelectrochemical Ratiometric Aptasensor with up-Converting Nanocrystals Using Spatial-Resolved Technique on Homemade 3D Printed Device. Anal. Chem. 2019, 91, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Tan, T.; Fu, J.-J.; Zheng, T.; Zhu, J.-J. A novel aptamer-based competition strategy for ultrasensitive electrochemical detection of leukemia cells. Analyst 2013, 138, 6323–6330. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Zheng, L.; Zhan, Y.; He, L. Graphene oxide/poly-l-lysine assembled layer for adhesion and electrochemical impedance detection of leukemia K562 cancercells. Biosens. Bioelectron. 2013, 42, 112–118. [Google Scholar] [CrossRef]
- Rahmati, Z.; Roushani, M.; Hosseini, H. Hierarchical nickel hydroxide nanosheets grown on hollow nitrogen doped carbon nanoboxes as a high-performance surface substrate for alpha-fetoprotein cancer biomarkers electrochemical aptasensing. Talanta 2022, 237, 122924. [Google Scholar] [CrossRef]
- Menon, S.; Mathew, M.R.; Sam, S.; Keerthi, K.; Kumar, K.G. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. J. Electroanal. Chem. 2020, 878, 114596. [Google Scholar] [CrossRef]
- Lopes, L.C.; Santos, A.; Bueno, P.R. An outlook on electrochemical approaches for molecular diagnostics assays and discussions on the limitations of miniaturized technologies for point-of-care devices. Sens. Actuators Rep. 2022, 4, 100087. [Google Scholar] [CrossRef]
- Saito, S.; Espinoza-Mercado, F.; Liu, H.; Sata, N.; Cui, X.; Soukiasian, H.J. Current status of research and treatment for non-small cell lung cancer in never-smoking females. Cancer Biol. Ther. 2017, 18, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Qin, B.; Sun, Y.; Li, J. Electrochemical detection of VEGF165 lung cancer marker based on Au-Pd alloy assisted aptasenor. Int. J. Electrochem. Sci. 2017, 12, 1818–1828. [Google Scholar] [CrossRef]
- Li, R.; Wen, Y.; Wang, F.; He, P. Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods. J. Anim. Sci. Biotechnol. 2021, 12, 108. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Byrne, H.; O’Kennedy; Richard, J. Antibodies and antibody-derived analytical biosensors. Essays Biochem. 2016, 60, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; Jo, H.; Oh, S.S. Detection and beyond: Challenges and advances in aptamer-based biosensors. Mater. Adv. 2020, 1, 2663–2687. [Google Scholar] [CrossRef]
- Shekari, Z.; Zare, H.R.; Falahati, A. Developing an Impedimetric Aptasensor for Selective Label–Free Detection of CEA as a Cancer Biomarker Based on Gold Nanoparticles Loaded in Functionalized Mesoporous Silica Films. J. Electrochem. Soc. 2017, 164, B739–B745. [Google Scholar] [CrossRef]
- Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.Y.; Hsieh, C.H.; Wen, C.N.; Wen, Y.H.; Chen, C.H.; Lu, J.J. Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers. PloS One 2016, 11, e0158285. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Liu, X.; Qin, Y.; Deng, C.; Xiang, J. A simple regenerable electrochemical aptasensor for the parallel and continuous detection of biomarkers. RSC Adv. 2016, 6, 58469–58476. [Google Scholar] [CrossRef]
- Gazdar, A.F.; Bunn, P.A.; Minna, J.D. Small-cell lung cancer: What we know, what we need to know and the path forward. Nat. Rev. Cancer 2017, 17, 725–737. [Google Scholar] [CrossRef]
- Hu, L.; Hu, S.; Guo, L.; Shen, C.; Yang, M.; Rasooly, A. DNA Generated Electric Current Biosensor. Anal. Chem. 2017, 89, 2547–2552. [Google Scholar] [CrossRef]
- Shaban, M.; Hasanzadeh, M.; Solhi, E. An Fe3O4/PEDOT: PSS nanocomposite as an advanced electroconductive material for the biosensing of the prostate-specific antigen in unprocessed human plasma samples. Anal. Methods 2019, 11, 5661–5672. [Google Scholar] [CrossRef]
- Formisano, N.; Jolly, P.; Bhalla, N.; Cromhout, M.; Flanagan, S.P.; Fogel, R.; Limson, J.L.; Estrela, P. Optimisation of an electrochemical impedance spectroscopy aptasensor by exploiting quartz crystal microbalance with dissipation signals. Sens. Actuators B Chem. 2015, 220, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Bertok, T.; Sediva, A.; Katrlik, J.; Gemeiner, P.; Mikula, M.; Nosko, M.; Tkac, J. Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles. Talanta 2013, 108, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, M.-S.; Kim, Y.-W.; Han, S.-Y.; Min, K.-I.; Rahman, M.; Shim, Y.-B.; Ban, C.-I. Detection for folding of the thrombin binding aptamer using label-free electrochemical methods. BMB Rep. 2008, 41, 126–131. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | Target | Technique | Sample | Assay Time | LOD | Linear Range | Reference |
---|---|---|---|---|---|---|---|
Breast Cancer | EGFR | DPV | Serum | 30 min | 50 pg/mL | 1–40 ng/mL | [46] |
ER | DPV | Buffer | 10 min | 0.001 ng/mL | 0.001–1000 pg/µL | [47] | |
Exosomes | CV | buffer | 1 h | 96 particles/μL. | 1.12 × 102–1.12 × 108 particles/μL | [48] | |
Exosomes (MCF-7 cells) | ECL | Blood serum sample | 120 min | 7.41 × 104 particle/mL | 3.4 × 105 –1.7 × 108 particle/mL | [49] | |
HER2 | stripping voltammetry | Human serum | 20 min | 26 cells/mL | 50 to 20,000 cells/mL | [30] | |
HER2 | EIS | Buffer | - | 0.047 pg/mL | 0.01 to 5 ng/mL | [50] | |
HER2 | CV, EIS | Serum | 2 h | 1 pM | 1 pM–100 nM | [51] | |
HER2 | EIS | Serum sample | 40 min | 50 fg/mL | 0.1 pg/mL–1 ng/mL | [48] | |
HER2 | CV, DPV, EIS | PBS buffer | 5–10 min | 0.001 ng/mL | 0.001–100 ng/mL | [52] | |
MCF-7 | CC, CV, EIS | Serum | 25 min | 47 cells/mL | 0–500 cells/mL | [53] | |
MCF-7 | SWV, CV | Human plasma | 2 h | 328 cells/mL | 328–593 cells/mL | [54] | |
MCF-7 | CV, DPV | Human serum | 60 min | 20 cells/mL | 50–106 cells/mL | [55] | |
MCF-7 Exosomes | PEC | Buffer | 110 min (total) | 1.38 × 103 particles/μL | 5.00 × 103 to 1.00 × 106 particles/mL | [56] | |
MDA-MB-231 | DPV | Blood Serum | 30 min | 5 cell/ mL | 10–1 × 103 cell/mL | [57] | |
MUC1 | DPV | Serum sample | 25 min | 0.79 fM | 1 fM–100 nM | [58] | |
MUC1 | SWV, CV | Buffer | 1 h | 0.33 pM | 1.0 pM–10 µM | [59] | |
MUC-1 | EIS | PBS buffer | 2 h | 38 cells/mL | 100 to 5.0 × 107 cells/mL | [33] | |
Nucleolin | DPV | Buffer | 1 h | 8 ± 2 cells ml/mL | 10–106 cells/mL | [60] | |
Nucleolin | ECL | Buffer | 10 min | 10 cells | 10–100 cells | [61] | |
Nucleolin | EIS | Buffer | - | 40 cells/mL | 103–107 cells/mL | [62] | |
Nucleolin | CV, EIS | Phosphate buffer | 30 min | 4 cells/mL | 1 × 101–1 × 106 cells/mL | [63] | |
OPN | CV, SWV | Synthetic human plasma | 60 min | 1.3 ± 0.1 nM | CV: 25 to 100 nM SWV: 12 to 100 nM | [64] | |
OPN | CV | PBS buffer | 60 min | 3.7 ± 0.6 nM | 25–200 nM | [65] | |
PDGF-BB, MCF-7 cells | CV, SWV | PBS buffer | - | PDGF-BB: 0.52 nM MCF-7: 328 cells/mL | PDGF: 0.52–1.52 nM MCF-7: 328 to 593 cells/mL | [54] | |
Lung Cancer | CEA, NSE | CV, DPV | Serum | 1 h | CEA: 2 pg/mL NSE: 10 pg/mL | CEA: 0.01–500 ng/mL NSE: 0.05–500 ng/mL | [66] |
CEA | DPV, EIS | Human serum | 85 min (total) | 1.5 pg/mL | 5 pg/mL to 50 ng/mL | [67] | |
CEA | EIS | Buffer, serum | - | Buffer: 0.45 ng/mL Serum: 1.06 ng/mL | 0.77–14 ng/mL | [68] | |
Lung tumor | EIS | Blood plasma | ~25 min | - | - | [69] | |
Lung cancer tissues (proteins) | SWV | Blood plasma | 1 h | 0.023 ng/mL | 230 ng/mL to 0.023 ng/mL | [70] | |
VEGF165 | CV, EIS | Lung cancer Serum samples | 40 min | 1.0 pg/mL | 10.0–300.0 pg/mL | [71] | |
Lung cancer tumor | CV, DPV, SWV, EIS | Human blood | - | - | - | [14] | |
Lung/Breast/ others cancer | VEGF | DPV | Buffer | 45 min | 30 nmol/L | 0–250 nmol/L | [40] |
CEA | DPV | Spiked Serum | 50 min | 0.9 pg/mL | 3 pg/mL to 40 ng/mL | [35] | |
CEA | DPV, EIS, CV | Human serum | 1 h | 0.34 fg/mL | 0.5 fg/mL to 0.5 ng/mL | [43] | |
CEA | DPV, CV, EIS | Serum | 1 h | 0.31 pg/mL | 1 pg/mL–80 ng/mL | [72] | |
CEA | EIS | Buffer/Blood sample | 1 h 30 min | 0.5 pg/mL | 1 pg/mL–10 ng/mL | [73] | |
CEA | DPV | Buffer | 1 h | 40 fg/mL | 0.0001–10 ng/mL | [74] | |
CEA | PES | Serum | 60 min | 0.39 pg/mL | 0.001–2.5 ng/mL | [75] | |
VEGF165 | CV | Buffer | 1 h | 30 fM | 100 fM to 10 nM | [76] | |
MUC 1 | CV, SWV, EIS | Buffer | 120 min | 4 pM | 10 pM to 1 μM | [77] | |
CEA | CV, EIS | Buffer | 1 h | 3.4 ng/mL | 5 ng/mL–40 ng/mL | [78] | |
CEA | CV | PBS/spiked human serum | 40 min | 6.3 pg/mL | 50 pg/mL to 1.0 μg/mL | [11] | |
CEA | DPV | Buffer/spiked human serum | 45 min | 0.84 pg/mL | 10 pg/mLto 100 ng/mL | [79] | |
CEA and CA153 | PEC | Serum samples | 20 min | CEA: 2.85 pg/mL CA153: 0.0275 U/mL | CEA: 0.005–10 ng mL, CA153: 0.05–100 U/mL | [80] | |
Prostate Cancer | PSA | EIS | Buffer | 2 h | 0.5 pg/mL | 0.05 ng/mL to 50 ng/mL | [5] |
PSA | EIS | Buffer | 2 h (total) | 1 pg/mL | 1 × 102 pg/mL–1 × 102 ng/mL | [32] | |
PSA | DPV | Serum samples | 40 min | 0.25 ng/ mL | 0.25 to 200 ng/mL | [81] | |
PSA | SWV, EIS | Spiked human serum | - | EIS: 10 pg/mL | EIS: 10 pg/mL to 10 ng/mL | [82] | |
PSA | DPV | Blood serum | 30 min | 50 pg/mL | 0.125 to 128 ng/mL | [83] | |
PSA | PEC | Human serum | - | 0.34 pg/mL | 0.001 to 80 ng/mL | [84] | |
PSA | DPV | Human serum | 30 min | 0.064 pg/mL | 1 pg/mL to 100 ng/mL | [85] | |
PSA | DPV, EIS | Serum sample | 40 min | 1.0 pg/ mL | DPV: 0.005–20 ng/mL EIS: 0.005–100 ng/mL | [86] | |
PSA | EIS | Human serum | 2 h 30 min | 0.33 pg/mL | 5 to 2 × 104 pg/mL | [87] | |
PSA | CV, SWV, EIS | Buffer | 30 min | 0.028 * and 0.007 ** ng/mL | 0.5–7 ng/mL | [88] | |
PSA | PEC | PBS buffer/ spiked Serum | 40 min | 4.300 fg/mL | 1.000 × 10−5 to 500.0 ng/mL, | [89] | |
PSA | SWV, EIS | Serum sample | 4 h (total) | 2.3 fg/mL | 10 fg/mL–100 ng/mL | [90] | |
PSA | PEC | Human serum | 90 min | 0.52 pg/mL | 1.0 pg/mL to 8.0 ng/mL | [91] | |
PSA | ECL | Human serum | 60 min | 0.17 pg/mL | 0.5 pg/mL to 5.0 ng/mL | [92] | |
PSA | DPV | Spiked Urine Blood serum | 60 min | 280 pg/mL | 1 to 300 ng/mL | [93] | |
PSA | DPV | Human serum | 30 min | 6.2 pg/mL | 0.01–100 ng/mL | [94] | |
PSA, SAC | SWV | 50% Human serum | PSA: 2 h SAC: 1 h | PSA: 2.5 fg/mL, SAC: 14.4 fg/mL | PSA: 1 fg/mL to 500 ng/mL SAC: 1 fg/mL to 1 μg/mL | [95] | |
Blood cell cancer | Ramos cell | LSV | Human serum | 3 h | 10 cells/mL | 1 × 101–1 × 106 cell/mL | [42] |
Breast/ Liver cancer | HeLa, MCF-7, HepG2. | PEC | Buffer | 4 h 20 min (total) | 19 cell/mL (HeLa) | 50–5 × 105 cell/mL (HeLa) | [96] |
Breast/ Prostate cancer | CTC HER2, PSMA, and MUC1 | LSW | Spiked in Blood | 1 h | 2 cells/sensor | 2–200 cells/sensor | [97] |
PDGF-BB | DPV | PBS buffer | 40 min | 0.65 pM | 0.0007–20 nM | [98] | |
PDGF-BB | CV, EIS | ID water, 5% trehalose | 40 min | CV: 7 pM EIS: 1.9 pM | CV: 0.01–50 nM EIS: 0.005–50 nM | [99] | |
PDGF-BB | DPV | PBS buffer | 2 h | 0.034 pg/ mL | 0.0001 to 60 ng/mL | [100] | |
PDGF-BB | EIS | PBS buffer | 2 h | 0.82 pg/ mL | 1 pg/mL to 0.05 ng/mL | [101] | |
CAT | HER2 | EIS, CV | Diluted human serum | 2 h 20 min (total) | 15 fM | 0.1 pM to 20 nM | [102] |
Cervical cancer | HeLa | EIS | Buffer | 2 h | 90 cells/mL | 2.4 × 102–2.4 × 105 cells/mL | [103] |
Colon cancer | MUC-1 | EIS, CV | Buffer | 120 min | 40 cells/mL | 1.25 × 102–1.25 × 106 cells/mL | [104] |
CEA | PES | Human serum | 1 h | 1.9 pg/mL | 0.01 ng/mL to 2.5 ng | [105] | |
CEA | PEC | Serum | 90 min | 4.8 pg/ mL | 10.0 pg/mL–5.0 ng/mL | [106] | |
inflammation-associated carcinogenesis | TNF-α | SWV | Human blood | 4 h | 10 ng/mL | 10–100 ng/mL | [39] |
Leukemia, blood cancer | CCRF-CEM | SWV | Buffer | 40 min | 10 cells/mL | 1.0 × 102–1.0 × 106 Cells/mL | [107] |
K562 cells | EIS | Buffer | 40 min | 30 cells/mL | 1 × 102–1 × 107 cells/mL | [108] | |
Liver cancer | HepG2 | EIS | Buffer | 2 h | 2 cells/mL | 1 × 102–1 × 106 cells/mL | [22] |
HepG2 | DPV, CV, EIS | PBS buffer | 60 min | 15 cells/mL | 1 × 102–1 × 107 cell/mL | [41] | |
MEAR | DPV, CV, EIS | Diluted human blood | 60 min (Total) | 1 cell/mL | 1−14 Cells/mL | [38] | |
HepG2 | CV | buffer | 2 h | 2 cells/mL | 1 × 102–1 × 106 cells/mL | [22] | |
AFP | EIS | PBS/ diluted human serum | 30 min | 0.3 fg/mL | 1 fg/mL to 100 ng/mL | [109] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omage, J.I.; Easterday, E.; Rumph, J.T.; Brula, I.; Hill, B.; Kristensen, J.; Ha, D.T.; Galindo, C.L.; Danquah, M.K.; Sims, N.; et al. Cancer Diagnostics and Early Detection Using Electrochemical Aptasensors. Micromachines 2022, 13, 522. https://doi.org/10.3390/mi13040522
Omage JI, Easterday E, Rumph JT, Brula I, Hill B, Kristensen J, Ha DT, Galindo CL, Danquah MK, Sims N, et al. Cancer Diagnostics and Early Detection Using Electrochemical Aptasensors. Micromachines. 2022; 13(4):522. https://doi.org/10.3390/mi13040522
Chicago/Turabian StyleOmage, Joel Imoukhuede, Ethan Easterday, Jelonia T. Rumph, Imamulhaq Brula, Braxton Hill, Jeffrey Kristensen, Dat Thinh Ha, Cristi L. Galindo, Michael K. Danquah, Naiya Sims, and et al. 2022. "Cancer Diagnostics and Early Detection Using Electrochemical Aptasensors" Micromachines 13, no. 4: 522. https://doi.org/10.3390/mi13040522
APA StyleOmage, J. I., Easterday, E., Rumph, J. T., Brula, I., Hill, B., Kristensen, J., Ha, D. T., Galindo, C. L., Danquah, M. K., Sims, N., & Nguyen, V. T. (2022). Cancer Diagnostics and Early Detection Using Electrochemical Aptasensors. Micromachines, 13(4), 522. https://doi.org/10.3390/mi13040522