An Evaluation of MEMS-IMU Performance on the Absolute Trajectory Error of Visual-Inertial Navigation System
Abstract
:1. Introduction
2. Related Work
2.1. Evaluation and Analysis Work
2.2. Multi-IMUs Work
3. Experiments and Methods
3.1. Fusion Algorithm of VIO
3.1.1. System States
3.1.2. Visual Constraints
3.1.3. Pre-integration of IMU
3.1.4. Nolinearity Optimization
3.2. Mobile Platform Setup
3.3. Sensor Setup
3.4. Sensors Parameter Configuration
3.4.1. Calibration of MEMS-IMUs
3.4.2. Camera-IMU Temporal-Spatial Calibration
3.4.3. Sensors Frequency
3.4.4. Loop Closure
3.5. Evaluation Scenario
3.5.1. Weak Texture in Corridor
3.5.2. Uniform Velocity Motion State
3.5.3. Alternating Acceleration and Deceleration Motion State
3.5.4. Spin Move Forward Motion State
3.5.5. Strong Sun Light Scene
3.5.6. Long Term Scene
4. Results and Analysis
4.1. Turntable Test
4.2. Quantitative Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Uniform Scene
Slow | ATE | MPU6050 | HI219 | NV-MG-201 | ADIS16488 | ADIS16490 | MSCRG |
---|---|---|---|---|---|---|---|
Slow0 | Mean | 0.9124/1.1250 ↑ | 1.0151/1.1772 | 0.9344/1.1129 | 0.9871/1.0713 | 0.9177/1.0534 | 0.8240/1.0076 |
Median | 1.0192/1.2815 ↑ | 1.1606/1.3546 | 1.0385/1.2773 | 1.0562/1.2002 | 0.9499/1.1479 | 0.7879/1.0531 | |
RMSE | 1.0501/1.3076 ↑ | 1.181/1.3814 | 1.0769/1.2943 | 1.1458/1.2414 | 1.0694/1.2269 | 0.9571/1.1748 | |
Slow1 | Mean | 0.9982/0.9895 | 0.9016/1.0130 | 2.4118/0.9948 | 0.9532/0.9619 | 0.7919/0.9347 ↑ | 0.9319/0.8955 |
Median | 1.1267/1.1155 | 0.9185/1.1656 | 2.0879/1.1279 | 1.0373/1.0720 | 0.7604/1.0316 ↑ | 1.0083/0.9740 | |
RMSE | 1.196/1.1951 | 1.0977/1.2237 | 3.0902/1.2027 | 1.1436/1.1628 | 0.9512/1.1286 ↑ | 1.1177/1.0811 | |
Slow2 | Mean | 0.8791/0.9547 | 1.082/0.9788 | 0.7747/0.9659 ↑ | 0.9614/0.9266 | 0.8861/0.8967 | 0.8562/0.8535 |
Median | 0.9678/1.0318 | 1.1646/1.0415 | 0.8479/1.0376 ↑ | 0.9768/1.0005 | 0.9715/0.9713 | 0.901/0.9153 | |
RMSE | 1.0553/1.1400 | 1.3208/1.1690 | 0.9664/1.1542 ↑ | 1.1714/1.1048 | 1.0685/1.0664 | 1.0334/1.0132 | |
Slow3 | Mean | 1.0825/1.1577 ↑ | 1.1673/1.1765 | 1.1591/1.1613 | 1.1518/1.1288 | 1.1141/1.1078 | 1.0253/1.0660 |
Median | 1.0354/1.0487 ↑ | 1.1027/1.0637 | 1.0527/1.0424 | 1.0396/1.0171 | 1.0445/1.0383 | 1.0080/0.9922 | |
RMSE | 1.3088/1.4197 ↑ | 1.4243/1.4455 | 1.442/1.4278 | 1.3992/1.3878 | 1.3479/1.3576 | 1.2503/1.3082 | |
Slow4 | Mean | 1.0988/1.0994 | 1.1458/1.1457 | 1.1683/1.1205 | 1.1014/1.0757 | 1.0066/1.0275 | 0.9774/0.9730 |
Median | 1.2009/1.2267 | 1.2493/1.2761 | 1.3026/1.2539 | 1.1807/1.1815 | 1.1067/1.1086 | 1.0918/1.0319 | |
RMSE | 1.2709/1.2743 | 1.331/1.3305 | 1.3542/1.3006 | 1.2814/1.2486 | 1.1631/1.1923 | 1.1341/1.1300 |
Normal | ATE | MPU6050 | HI219 | NV-MG-201 | ADIS16488 | ADIS16490 | MSCRG |
---|---|---|---|---|---|---|---|
Normal0 | Mean | 0.9012/0.9403 | 0.9512/0.9569 | 0.8939/0.9518 ↑ | 0.9365/0.9214 | 0.9244/0.8931 | 0.8449/0.8592 |
Median | 1.0108/1.0967 | 1.0405/1.1298 | 0.9690/1.1193 ↑ | 0.9933/1.0597 | 0.9363/0.9941 | 0.8833/0.9112 | |
RMSE | 1.0628/1.1203 | 1.1431/1.1423 | 1.0515/1.1363 ↑ | 1.1215/1.0987 | 1.1086/1.0650 | 1.0133/1.0267 | |
Normal1 | Mean | 1.008/0.9150 | 1.0002/0.9375 | 1.3758/0.9261 | 1.1672/0.8910 | 1.0215/0.8685 | 0.8925/0.8311 |
Median | 1.0307/0.9896 | 0.9848/1.0287 | 1.2971/0.9995 | 1.1925/0.9519 | 1.0452/0.9204 | 0.8556/0.8462 | |
RMSE | 1.1937/1.0577 | 1.1769/1.0795 | 1.6474/1.0696 | 1.383/1.0324 | 1.2145/1.0143 | 1.0726/0.9770 | |
Normal2 | Mean | 1.1009/1.1163 | 1.1184/1.1337 | 1.8117/1.1198 | 1.0196/1.0886 ↑ | 1.1002/1.0666 | 1.0511/1.0275 |
Median | 1.2592/1.3108 | 1.2650/1.3211 | 1.7949/1.3030 | 1.0272/1.2722 ↑ | 1.2695/1.2555 | 1.2361/1.2060 | |
RMSE | 1.2867/1.3038 | 1.3064/1.3262 | 2.1023/1.3094 | 1.1777/1.2700 ↑ | 1.2763/1.2417 | 1.2189/1.1940 | |
Normal3 | Mean | 1.094/1.0652 | 1.2055/1.0787 | 2.2835/1.0662 | 1.0922/1.0416 | 1.1508/1.0278 | 1.0364/1.0003 |
Median | 1.1548/1.0851 | 1.2595/1.0977 | 1.5083/1.0815 | 1.0228/1.0473 | 1.1174/1.0257 | 0.9945/0.9829 | |
RMSE | 1.2522/1.2151 | 1.3812/1.2291 | 3.0337/1.2164 | 1.2712/1.1904 | 1.3275/1.1778 | 1.1962/1.1522 | |
Normal4 | Mean | 1.0675/1.1392 | 1.0915/1.1223 | 0.8973/1.1497 ↑ | 1.078/1.1115 | 1.0762/1.0801 | 0.9196/1.0357 |
Median | 1.1940/1.1446 | 1.2174/1.1190 | 1.0327/1.1515 ↑ | 1.1788/1.1033 | 1.1431/1.3724 | 0.9527/1.0138 | |
RMSE | 1.2755/1.3698 | 1.3080/1.5011 | 1.0475/1.3830 ↑ | 1.3186/1.3383 | 1.3034/1.3004 | 1.0934/1.2487 |
Fast | ATE | MPU6050 | HI219 | NV-MG-201 | ADIS16488 | ADIS16490 | MSCRG |
---|---|---|---|---|---|---|---|
Fast0 | Mean | 0.9561/1.0820 | 0.9762/1.1100 | 4.9392/1.0902 | 0.8968/1.0514 | 0.8359/1.0234 ↑ | 0.8661/0.9850 |
Median | 0.9923/1.1120 | 1.0133/1.1815 | 4.8637/1.1358 | 0.8401/1.0587 | 0.8179/1.0049 ↑ | 0.8228/0.9544 | |
RMSE | 1.1026/1.2503 | 1.1461/1.2789 | 6.156/1.2576 | 1.0471/1.2152 | 0.9937/1.1875 ↑ | 1.0135/1.1462 | |
Fast1 | Mean | 1.6826/1.1371 | 1.5799/1.1523 | 5.346/1.1433 | 1.1282/1.1127 | 1.1426/1.0887 | 1.3559/1.0530 |
Median | 1.8629/1.2633 | 1.6132/1.2948 | 5.7653/1.2849 | 1.1536/1.2200 | 1.0826/1.1825 | 1.5837/1.1135 | |
RMSE | 1.974/1.3432 | 1.8504/1.3582 | 6.4123/1.3509 | 1.3272/1.3150 | 1.3627/1.2873 | 1.5819/1.2470 | |
Fast2 | Mean | 1.1355/1.0110 | 1.2949/1.0426 | 3.7447/1.0228 | 0.9974/0.9864 | 0.9028/0.9466 ↑ | 1.0003/0.9087 |
Median | 1.2935/1.0741 | 1.3555/1.1110 | 4.0317/1.0989 | 1.0213/1.0229 | 0.8274/0.9488 ↑ | 1.0575/0.8987 | |
RMSE | 1.349/1.1764 | 1.5494/1.2102 | 4.5396/1.1893 | 1.1687/1.1504 | 1.0330/1.1087 ↑ | 1.1613/1.0701 | |
Fast3 | Mean | 0.6902/0.8320 ↑ | 0.8223/0.8551 | 1.1044/0.8403 | 1.078/0.8108 | 1.6313/0.7893 | 0.766/0.7615 |
Median | 0.7204/0.7722 ↑ | 0.7826/0.8011 | 0.8646/0.7838 | 0.9344/0.7538 | 1.513/0.7444 | 0.7928/0.7227 | |
RMSE | 0.8458/0.9759 ↑ | 0.9655/0.9997 | 1.3657/0.9853 | 1.3591/0.9558 | 1.9245/0.9354 | 0.8762/0.9094 | |
Fast4 | Mean | 0.8369/0.8511 | 0.9637/0.8636 | 0.7259/0.8507 ↑ | 1.2174/0.8262 | 0.9624/0.8154 | 0.7646/0.7957 |
Median | 0.8422/0.9188 | 0.8478/0.9566 | 0.7117/0.9280 ↑ | 1.0523/0.8803 | 0.8593/0.8364 | 0.7640/0.8134 | |
RMSE | 0.9892/0.9900 | 1.0377/1.0045 | 0.8949/0.9897 ↑ | 1.4716/0.9606 | 1.1077/0.9503 | 0.9042/0.9314 |
Appendix A.2. Alternating Acceleration and Deceleration
Varying | ATE | MPU6050 | HI219 | NV-MG-201 | ADIS16488 | ADIS16490 | MSCRG |
---|---|---|---|---|---|---|---|
Vary0 | Mean | 3.1442/0.8565 | 0.9675/0.8804 | 1.8236/0.8614 | 0.8628/0.8271 | 0.6212/0.7974 ↑ | 0.6321/0.7578 |
Median | 2.5754/0.9286 | 1.0943/0.9876 | 1.6019/0.9516 | 0.9879/0.8873 | 0.5668/0.8196 ↑ | 0.6858/0.7547 | |
RMSE | 4.0895/0.9926 | 1.1185/1.0199 | 2.231/0.9974 | 1.0088/0.9577 | 0.7329/0.9255 ↑ | 0.7222/0.8818 | |
Vary1 | Mean | 0.7834/0.8052 | 0.9755/0.8242 | 2.3572/0.8106 | 0.7476/0.7821 | 0.8797/0.7497 | 0.6229/0.7410 ↑ |
Median | 0.7256/0.7473 | 1.0616/0.8000 | 1.9911/0.7621 | 0.6495/0.7188 | 0.8082/0.6774 | 0.5938/0.6674 ↑ | |
RMSE | 0.9223/0.9398 | 1.1345/0.9642 | 3.0779/0.9472 | 0.8692/0.9180 | 1.0088/0.8914 | 0.7273/0.8898 ↑ | |
Vary2 | Mean | 0.9991/0.8205 | 1.0003/0.8398 | 2.2953/0.8252 | 0.9603/0.7957 | 0.981/0.7751 | 0.7688/0.7450 |
Median | 0.8234/0.8659 | 0.9777/0.9120 | 1.8541/0.8803 | 1.0685/0.8254 | 0.9861/0.7926 | 0.8802/0.7519 | |
RMSE | 1.2706/0.9907 | 1.2199/1.0138 | 3.0457/0.9972 | 1.1727/0.9611 | 1.2231/0.9373 | 0.9312/0.9032 | |
Vary3 | Mean | 0.9397/0.8479 | 0.9267/0.8602 | 1.8007/0.8501 | 0.5774/0.8259 ↑ | 0.7250/0.8224 | 0.7491/0.7976 |
Median | 0.9734/1.0072 | 1.056/1.0121 | 1.7407/0.9996 | 0.6014/0.9764 ↑ | 0.7392/0.9433 | 0.7941/0.8830 | |
RMSE | 1.1398/1.0319 | 1.123/1.0467 | 2.2473/1.0348 | 0.6782/1.0042 ↑ | 0.8334/1.0028 | 0.8507/0.9718 | |
Vary4 | Mean | 0.7687/0.8249 | 0.8873/0.8399 | 1.5669/0.8287 | 0.8343/0.8034 | 0.6626/0.7892 ↑ | 0.7768/0.7647 |
Median | 0.8952/0.8233 | 0.8828/0.8683 | 1.4704/0.8313 | 0.8051/0.7883 | 0.6469/0.7745 ↑ | 0.815/0.7513 | |
RMSE | 0.9163/0.9852 | 1.0959/1.0021 | 1.919/0.9896 | 0.9668/0.9599 | 0.7201/0.9438 ↑ | 0.9554/0.9158 |
Appendix A.3. Spin Move forward
Spin_move | ATE | MPU6050 | HI219 | NV-MG-201 | ADIS16488 | ADIS16490 | MSCRG |
---|---|---|---|---|---|---|---|
Spin_move0 | Mean | 9.3128/1.3158 | 0.8370/1.3188 | Fail/1.3027 | 0.6069/1.2982 ↑ | 0.6830/1.2838 | Fail/1.2548 |
Median | 7.5538/1.4859 | 0.9094/1.4970 | Fail/1.4748 | 0.6195/1.4543 ↑ | 0.6371/1.4289 | Fail/1.4066 | |
RMSE | 11.8427/1.4396 | 0.9383/1.4431 | Fail/1.4252 | 0.6891/1.4192 ↑ | 0.7805/1.4044 | Fail/1.3735 | |
Spin_move1 | Mean | 514.9947/1.1230 | 1.1685/1.1024 | 3537/1.0896 | 1.4894/1.1359 | 1.9135/1.0979 | 0.9042/1.1532 ↑ |
Median | 464.7805/1.0073 | 1.2253/1.0144 | 2783/1.0117 | 1.4236/1.0003 | 1.6958/0.9978 | 0.7804/1.0180 ↑ | |
RMSE | 686.0213/1.3204 | 1.3792/1.2997 | 4827/1.2765 | 1.6514/1.3381 | 2.2048/1.2858 | 1.0620/1.3512 ↑ | |
Spin_move2 | Mean | 2463/2.4171 | 1.9738/2.3948 ↑ | 3853/2.4889 | 5.6023/2.3980 | 10.8429/2.4722 | 98.577/2.3734 |
Median | 1842/2.4354 | 2.3318/2.3874 ↑ | 3004/2.4396 | 5.8112/2.3848 | 11.944/2.3987 | 144.8365/2.4576 | |
RMSE | 3502/2.8896 | 2.3169/2.8421 ↑ | 5261/3.0017 | 6.1396/2.8688 | 12.4/3.0149 | 117.7245/2.8578 | |
Spin_move3 | Mean | 762.9145/4.8219 | 5.7136/4.9950 | 1831/4.8104 | 211.801/3.9853 | 187.2453/4.6046 | 4.0960/4.7584 ↑ |
Median | 1024/4.6508 | 6.3944/4.9114 | 1795/4.6099 | 296.713/4.1932 | 254.9551/4.3790 | 4.3375/4.7746 ↑ | |
RMSE | 938.5596/5.3919 | 6.1691/5.5646 | 2412/5.3985 | 247.016/4.1072 | 217.4266/5.1701 | 4.5292/5.3275 ↑ | |
Spin_move4 | Mean | 6.8641/4.1975 | 2.8499/4.0148 | 16.3806/4.4178 | 14.6455/4.1447 | 13.4458/4.0248 | 2.2562/4.1285 ↑ |
Median | 6.097/4.4394 | 2.786/4.1166 | 15.6404/4.7137 | 13.917/4.3189 | 14.1733/4.0284 | 2.3056/4.5223 ↑ | |
RMSE | 7.8865/4.5753 | 3.2994/4.3851 | 17.7753/4.8355 | 16.3221/4.5232 | 14.4809/4.4117 | 2.4836/4.5508 ↑ | |
Spin_move5 | Mean | 1.7864/1.8822 | 1.3078/1.9618 ↑ | 33.2181/1.6030 | 2.0107/1.7846 | 1.6161/1.8418 | 2.7025/1.8386 |
Median | 1.7204/1.5188 | 1.2788/1.6052 ↑ | 26.1658/1.7265 | 1.9731/1.4896 | 1.5320/1.4320 | 2.6953/1.4755 | |
RMSE | 2.1640/2.3535 | 1.5237/2.4532 ↑ | 42.2767/1.8329 | 2.6537/2.2030 | 1.9955/2.3295 | 3.5095/2.2956 | |
Spin_move6 | Mean | 13.6722/0.9434 | 0.6434/0.9332 ↑ | 46.6108/0.9363 | 0.7195/0.9432 | 0.8378/0.9505 | 0.9842/0.9544 |
Median | 6.8829/0.9880 | 0.4331/0.9815 ↑ | 56.8551/0.9817 | 0.5068/0.9932 | 0.7124/0.9787 | 0.8864/0.9844 | |
RMSE | 21.8973/1.1160 | 0.8054/1.1017 ↑ | 52.1628/1.1061 | 0.8797/1.1143 | 1.0111/1.1253 | 1.1772/1.1291 | |
Spin_move7 | Mean | 2.8939/0.8054 | 0.9454/0.7967 | 1411/0.7933 | 0.8374/0.7884 | 0.8123/0.8002 | 1.7947/0.7939 |
Median | 2.2887/0.9796 | 1.0159/0.9839 | 1469/0.9766 | 0.8556/0.9575 | 0.8074/0.9543 ↑ | 2.0807/0.9192 | |
RMSE | 3.954/0.9625 | 1.1267/0.9505 | 1825/0.9471 | 0.9918/0.9423 | 0.9729/0.9583 | 2.031/0.9520 | |
Spin_move8 | Mean | 4.2439/0.8824 | 0.8732/0.8513 | 329.0178/0.8512 | 0.7316/0.8634 ↑ | 0.7832/0.8788 | 0.8017/0.8844 |
Median | 2.2936/1.0679 | 0.9903/1.0039 | 481.1018/1.0141 | 0.8610/1.0398 ↑ | 0.9274/1.0535 | 0.9291/1.0623 | |
RMSE | 6.586/1.0114 | 1.0114/0.9790 | 389.8784/0.9772 | 0.8484/0.9885 ↑ | 0.9270/1.0074 | 0.8981/1.0134 | |
Spin_move9 | Mean | 5.4395/0.7435 | 0.7816/0.7302 | Fail/0.7288 | 0.7569/0.7336 | 0.949/0.7529 | 1.3903/0.7628 |
Median | 4.4004/0.8579 | 0.8878/0.8508 | Fail/0.8416 | 0.8768/0.8333 | 1.0605/0.8417 | 1.2123/0.8347 | |
RMSE | 7.086/0.8554 | 0.8975/0.8357 | Fail/0.8369 | 0.8612/0.8469 | 1.0783/0.8738 | 1.6942/0.8881 | |
Spin_move10 | Mean | 1980/0.7985 | 0.9958/0.8037 | 27.7235/0.7860 | 0.9549/0.7925 | 2.384/0.8557 | 24.744/0.8828 |
Median | 2001/0.9004 | 1.0436/0.8900 | 29.3865/0.8791 | 0.9904/0.9080 | 2.3141/0.9518 | 29.8661/0.9789 | |
RMSE | 2527/0.9095 | 1.1376/0.9086 | 30.5027/0.9016 | 1.0575/0.9045 | 2.8871/0.9694 | 28.2283/1.0014 |
Appendix A.4. Strong Illumination
Strongillumination | ATE | MPU6050 | HI219 | NV-MG-201 | ADIS16488 | ADIS16490 | MSCRG |
---|---|---|---|---|---|---|---|
Vary_velocity0 | Mean | 1.4843/1.0077 | 0.9915/1.0183 | 1.4721/0.9971 | 0.9666/0.9841 | 0.7658/0.9681 ↑ | 0.9828/0.9524 |
Median | 1.628/1.1907 | 1.1787/1.2115 | 1.2117/1.1863 | 1.1687/1.1491 | 0.7188/1.1042 ↑ | 1.0526/1.0672 | |
RMSE | 1.775/1.1835 | 1.1552/1.1969 | 1.7483/1.1716 | 1.1383/1.1544 | 0.8789/1.1350 ↑ | 1.1748/1.1158 | |
Fast0 | Mean | 1.0157/1.1616 | 1.0542/1.1764 | 1.1456/1.1610 | 0.8650/1.1382 ↑ | 0.8858/1.1114 | 0.9009/1.0884 |
Median | 1.2064/1.4117 | 1.3031/1.4534 | 1.2621/1.4259 | 1.0067/1.3778 ↑ | 1.0558/1.3304 | 1.1053/1.2560 | |
RMSE | 1.2024/1.3876 | 1.2778/1.4068 | 1.4005/1.3871 | 1.0288/1.3576 ↑ | 1.0675/1.3238 | 1.069/1.2939 | |
Normal0 | Mean | 0.8409/0.9271 | 0.8953/0.9434 | 0.9146/0.9304 | 0.7958/0.9082 ↑ | 0.8329/0.8737 | 0.7622/0.8510 |
Median | 1.0407/1.1921 | 0.8647/1.1856 | 1.1182/1.1789 | 0.9343/1.1743 ↑ | 1.0235/1.0877 | 0.8512/1.0243 | |
RMSE | 1.0102/1.1267 | 1.0873/1.1498 | 1.1284/1.1330 | 0.9649/1.0991 ↑ | 0.9992/1.0564 | 0.9158/1.0273 | |
Slow0 | Mean | 1.039/1.1498 ↑ | 1.1163/1.1605 | 1.1237/1.1531 | 1.0662/1.1316 | 1.0539/1.1189 | 0.9892/1.0922 |
Median | 1.0382/1.1812 ↑ | 1.1143/1.1965 | 1.1434/1.1837 | 1.0466/1.1507 | 1.0229/1.1134 | 0.9656/1.0583 | |
RMSE | 1.2245/1.3645 ↑ | 1.3212/1.3778 | 1.3313/1.3699 | 1.2667/1.3437 | 1.2483/1.3262 | 1.1685/1.2973 | |
Spin_move0 | Mean | 111.9958/1.1297 | 0.8543/1.1502 ↑ | Fail/1.1275 | 0.9878/1.1192 | 1.768/1.0893 | 2.0928/1.0848 |
Median | 146.6053/1.0838 | 0.9553/1.1028 ↑ | Fail/1.0713 | 1.0784/1.0584 | 1.4484/1.0151 | 2.2004/0.9645 | |
RMSE | 128.2474/1.3380 | 0.9831/1.3575 ↑ | Fail/1.3321 | 1.1702/1.3290 | 2.2083/1.3028 | 2.3653/1.3043 | |
Vary_velocity1 | Mean | 0.7735/0.8498 | 0.6178/0.8052 ↑ | 1.9662/0.8364 | 0.9341/0.8711 | 0.8033/0.9173 | 0.9016/0.9489 |
Median | 0.7705/0.8905 | 0.6200/0.8349 ↑ | 2.0385/0.8892 | 0.8833/0.9074 | 0.5831/0.9699 | 0.8170/1.0091 | |
RMSE | 0.9017/1.0073 | 0.7082/0.9524 ↑ | 2.3543/0.9914 | 1.058/1.0341 | 1.1307/1.0902 | 1.0409/1.1280 | |
Spin_move1 | Mean | 14.338/0.8273 | 0.5961/0.8104 ↑ | Fail/0.8201 | 0.6550/0.8236 | 1.1148/0.8598 | 2.0208/0.8599 |
Median | 11.3966/0.5462 | 0.5879/0.5573 ↑ | Fail/0.5484 | 0.6725/0.5388 | 1.2885/0.5925 | 1.4855/0.6288 | |
RMSE | 18.6681/1.0249 | 0.6690/0.9988 ↑ | Fail/1.0167 | 0.7584/1.0240 | 1.3953/1.0637 | 2.6148/1.0571 |
Appendix B
References
- Qin, T.; Zheng, Y.; Chen, T.; Chen, Y.; Su, Q. RoadMap: A Light-Weight Semantic Map for Visual Localization towards Autonomous Driving. arXiv 2021, arXiv:2106.02527. [Google Scholar]
- Apple. Apple ARKit. Available online: https://developer.apple.com/arkit/ (accessed on 15 February 2022).
- Facebook. Oculus VR. Available online: https://www.oculus.com/ (accessed on 15 February 2022).
- Herath, S.; Irandoust, S.; Chen, B.; Qian, Y.; Kim, P.; Furukawa, Y. Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 5677–5683. [Google Scholar]
- Poulose, A.; Eyobu, O.S.; Han, D.S. An Indoor Position-Estimation Algorithm Using Smartphone IMU Sensor Data. IEEE Access 2019, 7, 11165–11177. [Google Scholar] [CrossRef]
- Poulose, A.; Han, D.S. Hybrid Indoor Localization Using IMU Sensors and Smartphone Camera. Sensors 2019, 19, 5084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, V.; Agrawal, S.; Datta, S.; Ghosh, A.; Dutt Sharma, V.; Chakravarty, D. DeepVO: A Deep Learning approach for Monocular Visual Odometry. arXiv 2016, arXiv:1611.06069. [Google Scholar]
- Clark, R.; Wang, S.; Wen, H.; Markham, A.; Trigoni, N. VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Qin, T.; Cao, S.; Pan, J.; Shen, S.J. A General Optimization-based Framework for Global Pose Estimation with Multiple Sensors. arXiv 2019, arXiv:1901.03642. [Google Scholar]
- Qin, T.; Pan, J.; Cao, S.; Shen, S.J. A General Optimization-based Framework for Local Odometry Estimation with Multiple Sensors. arXiv 2019, arXiv:1901.03638. [Google Scholar]
- Li, M.; Mourikis, A.I. Improving the accuracy of EKF-based visual-inertial odometry. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 828–835. [Google Scholar]
- Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual–inertial odometry using nonlinear optimization. Int. J. Robot. Res. 2014, 34, 314–334. [Google Scholar] [CrossRef] [Green Version]
- Mourikis, A.I.; Roumeliotis, S.I. A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 3565–3572. [Google Scholar]
- Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based approach. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 298–304. [Google Scholar]
- Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef] [Green Version]
- Mur-Artal, R.; Tardós, J.D. Visual-Inertial Monocular SLAM With Map Reuse. IEEE Robot. Autom. Lett. 2017, 2, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Falquez, J.M.; Kasper, M.; Sibley, G. Inertial aided dense & semi-dense methods for robust direct visual odometry. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 3601–3607. [Google Scholar]
- Weiss, S.; Siegwart, R. Real-time metric state estimation for modular vision-inertial systems. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 4531–4537. [Google Scholar]
- Lynen, S.; Achtelik, M.W.; Weiss, S.; Chli, M.; Siegwart, R. A robust and modular multi-sensor fusion approach applied to MAV navigation. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 3923–3929. [Google Scholar]
- Huang, G. Visual-Inertial Navigation: A Concise Review. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9572–9582. [Google Scholar]
- Delmerico, J.; Scaramuzza, D. A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 2502–2509. [Google Scholar]
- Jeon, J.; Jung, S.; Lee, E.; Choi, D.; Myung, H. Run Your Visual-Inertial Odometry on NVIDIA Jetson: Benchmark Tests on a Micro Aerial Vehicle. IEEE Robot. Autom. Lett. 2021, 6, 5332–5339. [Google Scholar] [CrossRef]
- Giubilato, R.; Chiodini, S.; Pertile, M.; Debei, S. An evaluation of ROS-compatible stereo visual SLAM methods on a nVidia Jetson TX2. Measurement 2019, 140, 161–170. [Google Scholar] [CrossRef]
- Poulose, A.; Senouci, B.; Han, D.S. Performance Analysis of Sensor Fusion Techniques for Heading Estimation Using Smartphone Sensors. IEEE Sens. J. 2019, 19, 12369–12380. [Google Scholar] [CrossRef]
- Jeerage, M.K. Reliability analysis of fault-tolerant IMU architectures with redundant inertial sensors. IEEE Aerosp. Electron. Syst. Mag. 1990, 5, 23–28. [Google Scholar] [CrossRef]
- Eckenhoff, K.; Geneva, P.; Huang, G. Sensor-Failure-Resilient Multi-IMU Visual-Inertial Navigation. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3542–3548. [Google Scholar]
- Brunner, T.; Changey, S.; Lauffenburger, J.-P.; Basset, M. Multiple MEMS-IMU localization: Architecture comparison and performance assessment. In Proceedings of the 22nd Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2015—Proceedings, Saint Petersburg, Russia, 25–27 May 2015; pp. 123–126. [Google Scholar]
- Chao, H.; Coopmans, C.; Di, L.; Chen, Y. A comparative evaluation of low-cost IMUs for unmanned autonomous systems. In Proceedings of the 2010 IEEE Conference on Multisensor Fusion and Integration, Salt Lake City, UT, USA, 5–7 September 2010; pp. 211–216. [Google Scholar]
- Machaj, J.; Racko, J.; Brida, P. Performance Comparison of Sensor Implemented in Smartphones with X-IMU. In Proceedings of the Conference on Computational Collective Intelligence, Halkidiki, Greece, 28–30 September 2016; pp. 190–199. [Google Scholar]
- Harindranath, A.; Arora, M. MEMS IMU Sensor Orientation Algorithms-Comparison in a Simulation Environment. In Proceedings of the 2018 International Conference on Networking, Embedded and Wireless Systems (ICNEWS), Bangalore, India, 27–28 December 2018; pp. 1–6. [Google Scholar]
- Woyano, F.; Lee, S.; Park, S. Evaluation and comparison of performance analysis of indoor inertial navigation system based on foot mounted IMU. In Proceedings of the 2016 18th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, 31 January–3 February 2016; pp. 792–798. [Google Scholar]
- Zhou, L.; Fischer, E.; Tunca, C.; Brahms, C.M.; Ersoy, C.; Granacher, U.; Arnrich, B. How We Found Our IMU: Guidelines to IMU Selection and a Comparison of Seven IMUs for Pervasive Healthcare Applications. Sensors 2020, 20, 4090. [Google Scholar] [CrossRef] [PubMed]
- Shi, J. Good features to track. In Proceedings of the 1994 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600. [Google Scholar]
- Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-Manifold Preintegration for Real-Time Visual--Inertial Odometry. IEEE Trans. Robot. 2017, 33, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Lupton, T.; Sukkarieh, S. Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions. IEEE Trans. Robot. 2012, 28, 61–76. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- El-Sheimy, N.; Hou, H.; Niu, X. Analysis and Modeling of Inertial Sensors Using Allan Variance. IEEE Trans. Instrum. Meas. 2008, 57, 140–149. [Google Scholar] [CrossRef]
- IEEE Std 647-1995; IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros. The Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 15 May 1996. [CrossRef]
- RPNG. R.P.N.G. kalibr_allan. Available online: https://github.com/rpng/kalibr_allan (accessed on 15 February 2022).
- Rehder, J.; Nikolic, J.; Schneider, T.; Hinzmann, T.; Siegwart, R. Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual axes. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4304–4311. [Google Scholar]
- Furgale, P.; Rehder, J.; Siegwart, R. Unified temporal and spatial calibration for multi-sensor systems. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1280–1286. [Google Scholar]
- Qin, T.; Shen, S. Online Temporal Calibration for Monocular Visual-Inertial Systems. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 3662–3669. [Google Scholar]
Normal Illumination | Strong Illumination | Corridor | |||||
---|---|---|---|---|---|---|---|
uniform_velocity (approximate) | varying_velocity | spin_move | long_term | slow, normal, fast, varying_velocity, spin_move | weak_ texture | ||
slow | normal | fast | alternating acceleration and deceleration | spin_move _forward | 30 min |
Grade | IMU Type | Range | Bandwidth | Bias Stability | Bias Repeatability | Non linearity | Resolution | Price $ | |
---|---|---|---|---|---|---|---|---|---|
Consumer | MPU6050 | Acc | ±4 g | \ | \ | \ | 0.5% | 0.06 mg/LSB | 1 |
Gyro | ±2000°/s | \ | \ | \ | 0.2% | 0.061°/s/LSB | |||
Consumer | HI219 | Acc | ±16 g | \ | \ | \ | \ | \ | 20 |
Gyro | ±2000°/s | \ | \ | \ | \ | \ | |||
Tactical | NV-MG-201 | Acc | ±30 g | 100 Hz | 80 μg | 100 μg | 0.03% | \ | 500 |
Gyro | ±500°/s | 80 Hz | 0.8°/h | 0.8°/h | 0.03% | \ | |||
Tactical | ADIS16488 | Acc | ±18 g | 330 Hz | 0.1 mg | ±16 mg | 0.5% | 0.8 mg/LSB | 2500 |
Gyro | ±450°/s | 330 Hz | 6.25°/h | ±0.2°/s | 0.01% | 0.02°/s/LSB | |||
Tactical | MSCRG | Acc | ±30 g | 200 Hz | 45 μg | 3.6 mg | 0.3% | 0.0572 mg/LSB | 3000 |
Gyro | ±300°/s | 75 Hz | \ | 0.07°/s | 0.15% | 0.03125°/s/LSB | |||
Tactical | ADIS16490 | Acc | ±8 g | 750 Hz | 3.6 μg | ±3.5 mg | 1.6% | 0.5 mg/LSB | 3500 |
Gyro | ±100°/s | 480 Hz | 1.8°/h | 0.05°/s | 0.3% | 0.005°/s/LSB |
Accelerometer | Gyroscope | |||||
---|---|---|---|---|---|---|
IMU Type | Noise | Bias Stability | Bias Random Walk | Noise | Bias Stability | Bias Random Walk |
MPU6050 | 0.000995 | 0.00035 | 0.000053 | 0.000048 | 0.000012 | 0.000001 |
HI219 | 0.001420 | 0.00040 | 0.000043 | 0.000005 | 5.00 × 10-7 | 0.000001 |
NV-MG-201 | 0.000508 | 0.00028 | 0.000028 | 0.000014 | 7.00 × 10-7 | 0.000001 |
ADIS16488 | 0.002999 | 0.00060 | 0.000014 | 0.000252 | 0.000034 | 0.000001 |
ADIS16490 | 0.000378 | 0.000034 | 0.000005 | 0.000051 | 8.00 × 10-6 | 0.000001 |
MSCRG | 0.000701 | 0.00015 | 0.000040 | 0.000205 | 1.80 × 10-5 | 0.000013 |
Long Term | MPU6050 | HI219 | NV-MG-201 | ADIS16488 | ADIS16490 | MSCRG | |
---|---|---|---|---|---|---|---|
Long_term | Mean | 5.72/3.9934 | 3.5327/4.0316↑ | Fail | 5.5085/4.0496 | 6.4623/4.0012 | 5.7496/3.9860 |
Median | 4.5199/2.7960 | 2.6263/2.8203↑ | Fail | 4.9339/2.8902 | 7.1918/2.8369 | 5.6274/2.8210 | |
RMSE | 7.4087/5.5448 | 4.2584/5.6121↑ | Fail | 6.3012/5.5689 | 7.8725/5.5018 | 6.5565/5.4862 |
Scenarios | Number of Experiments | MPU6050 | HI219 | NV-MG-201 | ADIS16488 | ADIS16490 | MSCRG |
---|---|---|---|---|---|---|---|
Uniform_velocity (approximate) | 15 | 3 | 0 | 4 | 1 | 3 | 0 |
Varying_velocity | 5 | 0 | 0 | 0 | 1 | 2 | 1 |
Spin_move | 11 | 0 | 3 | 0 | 2 | 1 | 3 |
Strong_illumination | 7 | 1 | 3 | 0 | 2 | 1 | 0 |
Long_term | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
Scenes | MPU6050 | HI219 | NV-MG-201 | ADIS16488 | ADIS16490 | MSCRG |
---|---|---|---|---|---|---|
Uniform_velocity | 0.1031 | 0.1019 | 0.1692 | 0.0927 | 0.0783 | 0.0955 |
Varying_velocity | 0.0432 | 0.0000 | 0.0000 | 0.1874 | 0.1952 | 0.1477 |
Spin_move | 0.1895 | 0.7093 | 0.0000 | 0.1874 | 0.1762 | 0.8175 |
Strong_illumination | 0.1368 | 0.1769 | 0.0386 | 0.1634 | 0.1619 | 0.1381 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, Z.; Zheng, S.; Cai, P.; Zou, X. An Evaluation of MEMS-IMU Performance on the Absolute Trajectory Error of Visual-Inertial Navigation System. Micromachines 2022, 13, 602. https://doi.org/10.3390/mi13040602
Liu Y, Li Z, Zheng S, Cai P, Zou X. An Evaluation of MEMS-IMU Performance on the Absolute Trajectory Error of Visual-Inertial Navigation System. Micromachines. 2022; 13(4):602. https://doi.org/10.3390/mi13040602
Chicago/Turabian StyleLiu, Yunfei, Zhitian Li, Shuaikang Zheng, Pengcheng Cai, and Xudong Zou. 2022. "An Evaluation of MEMS-IMU Performance on the Absolute Trajectory Error of Visual-Inertial Navigation System" Micromachines 13, no. 4: 602. https://doi.org/10.3390/mi13040602
APA StyleLiu, Y., Li, Z., Zheng, S., Cai, P., & Zou, X. (2022). An Evaluation of MEMS-IMU Performance on the Absolute Trajectory Error of Visual-Inertial Navigation System. Micromachines, 13(4), 602. https://doi.org/10.3390/mi13040602