Vacuum and Low-Temperature Characteristics of Silicon Oxynitride-Based Bipolar RRAM
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Properties of SiOxNy Film
3.2. Electrical Characteristics of Au/Ni/SiOxNy/p+-Si Device
3.2.1. Device Performance in a Vacuum at Room Temperature
3.2.2. Device Performance in a Vacuum at Cryogenic Temperature
3.2.3. Conduction and Switching Mechanism in Vacuum at 77 K
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foty, D. Symposium on Low Temperature Electronic Device Operation. In Proceedings of the 1991 Spring Meeting of The Electrochemical Society, Washington, DC, USA, 7–9 May 1991; Electrochemical Society: Pennington, NJ, USA, 1991. [Google Scholar]
- Alam, S.; Hossain, S.; Srinivasa, S.R.; Aziz, A. Cryogenic Memory Technologies. Available online: https://arxiv.org/abs/2111.09436 (accessed on 2 March 2022).
- Cryogenic Memory-Rambus. Available online: https://www.rambus.com/emerging-solutions/cryogenic-memory/ (accessed on 3 May 2021).
- Chen, W.; Chamele, N.; Barnaby, H.J.; Kozicki, M.N. Low-Temperature Characterization of Cu–Cu: Silica-Based Programmable. IEEE Electron Device Lett. 2017, 38, 1244–1247. [Google Scholar] [CrossRef]
- Fang, R.; Chen, W.; Gao, L.; Yu, W.; Yu, S. Low-Temperature Characteristics of HfOx-Based Resistive Random Access Memory. IEEE Electron Device Lett. 2015, 36, 567–569. [Google Scholar] [CrossRef]
- Nagashima, K.; Yanagida, T.; Oka, K.; Kanai, M.; Klamchuen, A.; Rahong, S.; Meng, G.; Horprathum, M.; Xu, B.; Zhuge, F.; et al. Prominent thermodynamical interaction with surroundings on nanoscale memristive switching of metal oxides. Nano Lett. 2012, 12, 5684–5690. [Google Scholar] [CrossRef] [PubMed]
- Das, N.C.; Kim, M.; Rani, J.R.; Hong, S.-M.; Jang, J.-H. Electroforming-Free Bipolar Resistive Switching Memory Based on Magnesium Fluoride. Micromachines 2021, 12, 1049. [Google Scholar] [CrossRef]
- Goux, L.; Czarnecki, P.; Chen, Y.Y.; Pantisano, L.; Wang, X.P.; Degraeve, R.; Govoreanu, B.; Jurczak, M.; Wouters, D.J.; Altimime, L. Evidences of oxygen-mediated resistive-switching mechanism in TiN\HfO2\Pt cells. Appl. Phys. Lett. 2010, 97, 243509. [Google Scholar] [CrossRef]
- Chen, K.H.; Tsai, T.M.; Cheng, C.M.; Huang, S.J.; Chang, K.C.; Liang, S.P.; Young, T.F. Schottky emission distance and barrier height properties of bipolar switching Gd:SiOx RRAM devices under different oxygen concentration environments. Materials 2017, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- Tsuruoka, T.; Terabe, K.; Hasegawa, T.; Valov, I.; Waser, R.; Aono, M. Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv. Funct. Mater. 2012, 22, 70–77. [Google Scholar] [CrossRef]
- Valov, I.; Tsuruoka, T. Effects of moisture and redox reactions in VCM and ECM resistive switching memories. J. Phys. D Appl. Phys. 2018, 51, 413001. [Google Scholar] [CrossRef]
- Tappertzhofen, S.; Hempel, M.; Valov, I.; Waser, R. Proton mobility in SiO2 thin films and impact of hydrogen and humidity on the resistive switching effect. Mater. Res. Soc. Symp. Proc. 2011, 1330, 1–6. [Google Scholar] [CrossRef]
- Tappertzhofen, S.; Valov, I.; Tsuruoka, T.; Hasegawa, T.; Waser, R.; Aono, M. Generic relevance of counter charges for cation-based nanoscale resistive switching memories. ACS Nano 2013, 7, 6396–6402. [Google Scholar] [CrossRef]
- Lübben, M.; Wiefels, S.; Waser, R.; Valov, I. Processes and Effects of Oxygen and Moisture in Resistively Switching TaOx and HfOx. Adv. Electron Mater. 2018, 4, 1700458. [Google Scholar] [CrossRef]
- Wang, M.; Bi, C.; Li, L.; Long, S.; Liu, Q.; Lv, H.; Lu, N.; Sun, P.; Liu, M. Thermoelectric seebeck effect in oxide-based resistive switching memory. Nat. Commun. 2014, 5, 4598. [Google Scholar] [CrossRef] [PubMed]
- Walczyk, C.; Walczyk, D.; Schroeder, T.; Bertaud, T.; Sowińska, M.; Lukosius, M.; Fraschke, M.; Wolansky, D.; Tillack, B.; Miranda, E.; et al. Impact of temperature on the resistive switching behavior of embedded HfO2-based RRAM devices. IEEE Trans. Electron Devices 2011, 58, 3124–3131. [Google Scholar] [CrossRef]
- Ahn, C.; Kim, S.; Gokmen, T.; Dial, O.; Ritter, M.; Wong, H.S.P. Temperature-dependent studies of the electrical properties and the conduction mechanism of HfOx-based RRAM. In Proceedings of the Technical Program—2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, Taiwan, 28–30 April 2014; pp. 1–2. [Google Scholar] [CrossRef]
- Shang, J.; Liu, G.; Yang, H.; Zhu, X.; Chen, X.; Tan, H.; Hu, B.; Pan, L.; Xue, W.; Li, R.W. Thermally stable transparent resistive random access memory based on all-oxide heterostructures. Adv. Funct. Mater. 2014, 24, 2171–2179. [Google Scholar] [CrossRef]
- Zhou, P.; Ye, L.; Sun, Q.Q.; Chen, L.; Ding, S.J.; Jiang, A.Q.; Zhang, D.W. The temperature dependence in nanoresistive switching of HfAlO. IEEE Trans. Nanotechnol. 2012, 11, 1059–1062. [Google Scholar] [CrossRef]
- Das, N.C.; Kim, M.; Rani, J.R.; Hong, S. Low-temperature characteristics of magnesium fluoride based bipolar RRAM devices. Nanoscale 2022, 14, 3738–3747. [Google Scholar] [CrossRef]
- Das, N.C.; Oh, S.I.; Rani, J.R.; Hong, S.M.; Jang, J.H. Multilevel bipolar electroforming-free resistive switching memory based on silicon oxynitride. Appl. Sci. 2020, 10, 3506. [Google Scholar] [CrossRef]
- Dupuis, J.; Fourmond, E.; Ballutaud, D.; Bererd, N.; Lemiti, M. Optical and structural properties of silicon oxynitride deposited by plasma enhanced chemical vapor deposition. Thin Solid Film. 2010, 519, 1325–1333. [Google Scholar] [CrossRef]
- Ay, F.; Aydinli, A. Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Opt. Mater. 2004, 26, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Shams, Q.A.; Brown, W.D. Physical and Electrical Properties of Memory Quality PECVD Silicon Oxynitride. J. Electrochem. Soc. 1990, 137, 1244–1247. [Google Scholar] [CrossRef]
- Shi, Y.; He, L.; Guang, F.; Li, L.; Xin, Z.; Liu, R. A review: Preparation, performance, and applications of silicon oxynitride film. Micromachines 2019, 10, 552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, H.; Yang, B.L.; Cheng, Y.C. Chemistry of silicon oxide annealed in ammonia. Appl. Surf. Sci. 1993, 72, 49–54. [Google Scholar] [CrossRef]
- Dumas, L.; Quesnel, E.; Robic, J.-Y.; Pauleau, Y. Characterization of magnesium fluoride thin films deposited by direct electron beam evaporation. J. Vac. Sci. Technol. A Vac. Surf. Film. 2000, 18, 465–469. [Google Scholar] [CrossRef]
- Kinosita, K.; Nishibori, M. Porosity of Mgf2 Films. Evaluation Based on Changes in Refractive Index Due To Adsorption of Vapors. J. Vac. Sci. Technol. 1969, 6, 730–733. [Google Scholar] [CrossRef]
- Sealy, B.J.; Crocker, A.J.; Lee, M.J.; Egerton, R.F. Electrical properties of evaporated MgF2 films. Thin Solid Film. 1972, 11, 365–376. [Google Scholar] [CrossRef]
- Gao, R.; Lei, D.; He, Z.; Chen, Y.; Huang, Y.; En, Y.; Xu, X.; Zhang, F. Effect of Moisture Stress on the Resistance of HfO2/TaOx-Based 8-Layer 3D Vertical Resistive Random Access Memory. IEEE Electron Device Lett. 2020, 41, 38–41. [Google Scholar] [CrossRef]
- Bagdzevicius, S.; Maas, K.; Boudard, M.; Burriel, M. Interface-type resistive switching in perovskite materials. J. Electroceram. 2017, 39, 157–184. [Google Scholar] [CrossRef]
- Das, N.C.; Kim, M.; Kwak, D.U.; Rani, J.R.; Hong, S.M.; Jang, J.H. Effects of the Operating Ambiance and Active Layer Treatments on the Performance of Magnesium Fluoride Based Bipolar RRAM. Nanomaterials 2022, 12, 605. [Google Scholar] [CrossRef]
- Santosh, K. Nanoscale Semiconductor Memories: Technology and Applications. In Nanoscale Semiconductor Memories; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Zahoor, F.; Azni Zulkifli, T.Z.; Khanday, F.A. Resistive Random Access Memory (RRAM): An Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications. Nanoscale Res. Lett. 2020, 15, 90. [Google Scholar] [CrossRef]
- Guo, T.; Sun, B.; Zhou, Y.; Zhao, H.; Lei, M.; Zhao, Y. Overwhelming coexistence of negative differential resistance effect and RRAM. Phys. Chem. Chem. Phys. 2018, 20, 20635–20640. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Q.; Long, S.; Lv, H.; Banerjee, W.; Liu, M. Multilevel unipolar resistive switching with negative differential resistance effect in Ag/SiO2/Pt device. J. Appl. Phys. 2014, 116, 154509. [Google Scholar] [CrossRef]
- Wu, F.; Si, S.; Shi, T.; Zhao, X.; Liu, Q.; Liao, L.; Lv, H.; Long, S.; Liu, M. Negative differential resistance effect induced by metal ion implantation in SiO2 film for multilevel RRAM application. Nanotechnology 2018, 29, 54001. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Huang, P.; Zhou, Z.; Zhu, D.; Han, R.; Ding, X.; Liu, L.; Liu, X.; Kang, J. Ru-based Oxide Resistive Random Access Memory for BEOL-Compatible Novel NVM Applications. In Proceedings of the 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 31 October–3 November 2018; p. 2628. [Google Scholar] [CrossRef]
- Feng, Y.; Huang, P.; Zhou, Z.; Ding, X.; Liu, L.; Liu, X.; Kang, J. Negative Differential Resistance Effect in Ru-Based RRAM Device Fabricated by Atomic Layer Deposition. Nanoscale Res. Lett. 2019, 14, 2–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onofrio, N.; Guzman, D.; Strachan, A. Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nat. Mater. 2015, 14, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Seo, H.; Kim, Y.; Im, H.; Hong, J.P.; Park, J.W.; Lee, J.K. Temperature dependence of high- and low-resistance bistable states in polycrystalline NiO films. Appl. Phys. Lett. 2007, 90, 052104. [Google Scholar] [CrossRef]
- Uenuma, M.; Ishikawa, Y.; Uraoka, Y. Joule heating effect in nonpolar and bipolar resistive random access memory. Appl. Phys. Lett. 2015, 107, 073503. [Google Scholar] [CrossRef]
- Chen, A.B. Size-Dependent Metal-Insulator Transition in Pt-Dispersed SiO2 Thin Film: A Candidate for Future Nonvolatile Memory. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2011; p. 117. [Google Scholar]
- Pérez, E.; Wenger, C.; Grossi, A.; Zambelli, C.; Olivo, P.; Roelofs, R. Impact of temperature on conduction mechanisms and switching parameters in HfO2 -based 1T-1R resistive random access memories devices. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2017, 35, 01A103. [Google Scholar] [CrossRef] [Green Version]
- Chiu, F.C. A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 2014, 578168. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.T.; Long, S.B.; Liu, Q.; Lü, H.B.; Liu, S.; Liu, M. An overview of resistive random access memory devices. Chin. Sci. Bull. 2011, 56, 3072–3078. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.W.; Ismail, R. Conduction mechanism of valence change resistive switching memory: A survey. Electronics 2015, 4, 586–613. [Google Scholar] [CrossRef]
- Chiu, F.C.; Chou, H.W.; Lee, J.Y.M. Electrical conduction mechanisms of metal La2O3 Si structure. J. Appl. Phys. 2005, 97, 103503. [Google Scholar] [CrossRef]
- Rebib, F.; Tomasella, E.; Dubois, M.; Cellier, J.; Sauvage, T.; Jacquet, M. Structural and optical investigations of SiOxNy thin films deposited by R.F. sputtering. Surf. Coat. Technol. 2005, 200, 330–333. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, H.D.; Hong, S.M.; Yun, M.J.; Jeon, D.S.; Kim, T.G. Improved resistive switching phenomena observed in SiNx-based resistive switching memory through oxygen doping process. Phys. Status Solidi-Rapid Res. Lett. 2014, 8, 239–242. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, N.C.; Kim, M.; Hong, S.-M.; Jang, J.-H. Vacuum and Low-Temperature Characteristics of Silicon Oxynitride-Based Bipolar RRAM. Micromachines 2022, 13, 604. https://doi.org/10.3390/mi13040604
Das NC, Kim M, Hong S-M, Jang J-H. Vacuum and Low-Temperature Characteristics of Silicon Oxynitride-Based Bipolar RRAM. Micromachines. 2022; 13(4):604. https://doi.org/10.3390/mi13040604
Chicago/Turabian StyleDas, Nayan C., Minjae Kim, Sung-Min Hong, and Jae-Hyung Jang. 2022. "Vacuum and Low-Temperature Characteristics of Silicon Oxynitride-Based Bipolar RRAM" Micromachines 13, no. 4: 604. https://doi.org/10.3390/mi13040604
APA StyleDas, N. C., Kim, M., Hong, S. -M., & Jang, J. -H. (2022). Vacuum and Low-Temperature Characteristics of Silicon Oxynitride-Based Bipolar RRAM. Micromachines, 13(4), 604. https://doi.org/10.3390/mi13040604