Spectral Interferometry with Frequency Combs
Abstract
:1. Introduction
2. Generation of Optical Frequency Combs
3. Basics of Spectral Interferometry
4. Frequency Combs in Spectral Interferometry
4.1. Time Domain Interferometry
4.2. Spectral Domain Interferometry
4.3. Comb Calibrated SWI and OFDR
4.4. Fourier Domain Modelocked Lasers
4.5. Dual Comb Interferometry
4.6. Optical Arbitrary Waveform Characterization
5. Practical Applications
5.1. Molecular Spectroscopy
5.2. Characterization of Optical Fibers
5.3. Optical Coherence Tomography
5.4. Spectroscopy Analysis of Microphotonic Devices
5.5. Characterization and Detection of Photonic Signals
6. Summary and Outlook
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FTS | Fourier transform spectroscopy |
FSR | Free spectral range |
TD-SI | Time domain-spectral interferometry |
SDI | Spectral domain interferometry |
SWI | Swept-wavelength interferometry |
OFDR | Optical frequency domain reflectometry |
CEO | Carrier envelope offset |
MZI | Mach Zehnder interferometry |
AWG | Arrayed waveguide grating |
DSP | Digital signal processing |
ADC | Analog to digital converter |
DRS | Double resonance spectroscopy |
ISRS | Impulsive stimulated Raman scattering |
OTDR | Optical time domain reflectometry |
SS | Swept source |
FD | Fourier domain |
WDM | Wavelength division multiplexing |
OFDM | Orthogonal frequency domain modulation |
RF | Radio frequency |
CW | Carrier wave |
DUT | Device under test |
SNR | Signal to noise ratio |
OSNR | Optical signal to noise ratio |
MLL | Mode-locked laser |
FDML | Fourier domain mode locking |
DCI | Dual-comb interferometry |
SWI | Swept-wavelength interferometry |
DC-SWI | Dual comb swept wavelength interferometry |
EO | Electrooptic |
EOM | Electrooptic modulator |
PM | Phase modulator |
IM | Intensity modulator |
MZM | Mach–Zehnder modulator |
OCT | Optical coherence tomography |
ECL | External cavity laser |
FFT | Fast Fourier transform |
FFP-TF | Fiber Fabry–Perot filter |
FFP-FC | Frequency comb fiber Fabry–Perot filter |
FSR | Free spectral range |
DAQ | Data acquisition |
References
- Diddams, S.A.; Vahala, K.; Udem, T. Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science 2020, 369, eaay3676. [Google Scholar] [CrossRef] [PubMed]
- Fortier, T.; Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2019, 2, 153. [Google Scholar] [CrossRef]
- Picqué, N.; Hänsch, T.W. Frequency comb spectroscopy. Nat. Photonics 2019, 13, 146–157. [Google Scholar] [CrossRef]
- Diddams, S.A.; Hollberg, L.; Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 2007, 445, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Maslowski, P.; Lee, K.F.; Johansson, A.C.; Khodabakhsh, A.; Kowzan, G.; Rutkowski, L.; Mills, A.A.; Mohr, C.; Jiang, J.; Fermann, M.E.; et al. Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs. Phys. Rev. A 2016, 93, 021802. [Google Scholar] [CrossRef] [Green Version]
- Coddington, I.; Newbury, N.; Swann, W. Dual-comb spectroscopy. Optica 2016, 3, 414–426. [Google Scholar] [CrossRef] [Green Version]
- Del’Haye, P.; Arcizet, O.; Gorodetsky, M.L.; Holzwarth, R.; Kippenberg, T.J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nat. Photonics 2009, 3, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Giorgetta, F.; Coddington, I.; Baumann, E.; Swann, W.; Newbury, N. Fast high-resolution spectroscopy of dynamic continuous-wave laser sources. Nat. Photonics 2010, 4, 853–857. [Google Scholar] [CrossRef]
- Liu, J.; Brasch, V.; Pfeiffer, M.H.; Kordts, A.; Kamel, A.N.; Guo, H.; Geiselmann, M.; Kippenberg, T.J. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers. Opt. Lett. 2016, 41, 3134–3137. [Google Scholar] [CrossRef] [Green Version]
- Ideguchi, T.; Holzner, S.; Bernhardt, B.; Guelachvili, G.; Picqué, N.; Hänsch, T.W. Coherent Raman spectro-imaging with laser frequency combs. Nature 2013, 502, 355–358. [Google Scholar] [CrossRef]
- Fredrick, C.; Olsen, F.; Terrien, R.; Mahadevan, S.; Quinlan, F.; Diddams, S.A. Thermal-light heterodyne spectroscopy with frequency comb calibration. Optica 2022, 9, 221–230. [Google Scholar] [CrossRef]
- Vicentini, E.; Wang, Z.; Van Gasse, K.; Hänsch, T.W.; Picqué, N. Dual-comb hyperspectral digital holography. Nat. Photonics 2021, 15, 890–894. [Google Scholar] [CrossRef]
- Sinclair, L.C.; Deschênes, J.D.; Sonderhouse, L.; Swann, W.C.; Khader, I.H.; Baumann, E.; Newbury, N.R.; Coddington, I. Invited Article: A Compact Optically Coherent Fiber Frequency Comb. Rev. Sci. Instrum. 2015, 86, 081301. [Google Scholar] [CrossRef] [PubMed]
- Manurkar, P.; Perez, E.F.; Hickstein, D.D.; Carlson, D.R.; Chiles, J.; Westly, D.A.; Baumann, E.; Diddams, S.A.; Newbury, N.R.; Srinivasan, K.; et al. Fully Self-Referenced Frequency Comb Consuming 5 Watts of Electrical Power. OSA Continuum 2018, 1, 274–282. [Google Scholar] [CrossRef]
- Shoji, T.D.; Xie, W.; Silverman, K.L.; Feldman, A.; Harvey, T.; Mirin, R.P.; Schibli, T.R. Ultra-Low-Noise Monolithic Mode-Locked Solid-State Laser. Optica 2016, 3, 995–998. [Google Scholar] [CrossRef]
- Bartels, A.; Heinecke, D.; Diddams, S.A. 10-GHz Self-Referenced Optical Frequency Comb. Science 2009, 326, 681. [Google Scholar] [CrossRef] [Green Version]
- Torres-Company, V.; Weiner, A.M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev. 2014, 8, 368–393. [Google Scholar] [CrossRef] [Green Version]
- Parriaux, A.; Hammani, K.; Millot, G. Electro-optic frequency combs. Adv. Opt. Photonics 2020, 12, 223–287. [Google Scholar] [CrossRef]
- Carlson, D.R.; Hickstein, D.D.; Zhang, W.; Metcalf, A.J.; Quinlan, F.; Diddams, S.A.; Papp, S.B. Ultrafast Electro-Optic Light with Subcycle Control. Science 2018, 361, 1358–1363. [Google Scholar] [CrossRef] [Green Version]
- Kippenberg, T.J.; Gaeta, A.L.; Lipson, M.; Gorodetsky, M.L. Dissipative Kerr Solitons in Optical Microresonators. Science 2018, 361, eaan8083. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, M.; Bustos-Ramirez, R.; Tremblay, J.E.; Camacho-Gonzalez, G.F.; Wu, M.C.; Delfyett, P.J.; Fathpour, S. Towards On-Chip Self-Referenced Frequency-Comb Sources Based on Semiconductor Mode-Locked Lasers. Micromachines 2019, 10, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Buscaino, B.; Wang, C.; Shams-Ansari, A.; Reimer, C.; Zhu, R.; Kahn, J.M.; Lončar, M. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 2019, 568, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Zhang, M.; Wang, C.; Shao, L.; Reimer, C.; Zhang, Y.; King, O.; Esman, R.; Cullen, T.; Lončar, M. An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator. IEEE Photonics Technol. Lett. 2019, 31, 889–892. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Liu, S.; Bowers, J.E. Integrated Optical Frequency Comb Technologies. Nat. Photonics 2022, 16, 95–108. [Google Scholar] [CrossRef]
- Loewenstein, E.V. The history and current status of Fourier transform spectroscopy. Appl. Opt. 1966, 5, 845–854. [Google Scholar] [CrossRef]
- Baker, M.J.; Trevisan, J.; Bassan, P.; Bhargava, R.; Butler, H.J.; Dorling, K.M.; Fielden, P.R.; Fogarty, S.W.; Fullwood, N.J.; Heys, K.A.; et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 2014, 9, 1771–1791. [Google Scholar] [CrossRef] [Green Version]
- Robert, B. Introductory Fourier Transform Spectroscopy; Academic Press: New York, NY, USA, 1972. [Google Scholar] [CrossRef]
- Griffiths, P.R. Fourier Transform Infrared Spectrometry; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Shang, H.T. Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres. Electron. Lett. 1981, 17, 603–605. [Google Scholar] [CrossRef]
- Jasapara, J.; Her, T.H.; Bise, R.; Windeler, R.; DiGiovanni, D. Group-velocity dispersion measurements in a photonic bandgap fiber. JOSA B 2003, 20, 1611–1615. [Google Scholar] [CrossRef]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical Coherence Tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [Green Version]
- Weiner, A. Ultrafast Optics; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 72. [Google Scholar]
- Leitgeb, R.; Hitzenberger, C.; Fercher, A.F. Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 2003, 11, 889–894. [Google Scholar] [CrossRef]
- Chinn, S.; Swanson, E.; Fujimoto, J. Optical coherence tomography using a frequency-tunable optical source. Opt. Lett. 1997, 22, 340–342. [Google Scholar] [CrossRef] [PubMed]
- Mandon, J.; Guelachvili, G.; Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics 2009, 3, 99–102. [Google Scholar] [CrossRef]
- Khodabakhsh, A.; Abd Alrahman, C.; Foltynowicz, A. Noise-immune cavity-enhanced optical frequency comb spectroscopy. Opt. Lett. 2014, 39, 5034–5037. [Google Scholar] [CrossRef] [PubMed]
- Gherman, T.; Romanini, D. Mode–locked cavity–enhanced absorption spectroscopy. Opt. Express 2002, 10, 1033–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandon, J.; Guelachvili, G.; Picqué, N.; Druon, F.; Georges, P. Femtosecond laser Fourier transform absorption spectroscopy. Opt. Lett. 2007, 32, 1677–1679. [Google Scholar] [CrossRef] [Green Version]
- Zeitouny, M.; Balling, P.; K en, P.; Ma ika, P.; Horsten, R.C.; Persijn, S.T.; Urbach, H.P.; Bhattacharya, N. Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser. Ann. Phys. 2013, 525, 437–442. [Google Scholar] [CrossRef]
- Rutkowski, L.; Masłowski, P.; Johansson, A.C.; Khodabakhsh, A.; Foltynowicz, A. Optical frequency comb Fourier transform spectroscopy with sub-nominal resolution and precision beyond the Voigt profile. J. Quant. Spectrosc. Radiat. Transf. 2018, 204, 63–73. [Google Scholar] [CrossRef]
- Rutkowski, L.; Johansson, A.C.; Zhao, G.; Hausmaninger, T.; Khodabakhsh, A.; Axner, O.; Foltynowicz, A. Sensitive and broadband measurement of dispersion in a cavity using a Fourier transform spectrometer with kHz resolution. Opt. Express 2017, 25, 21711–21718. [Google Scholar] [CrossRef]
- Thorpe, M.J.; Ye, J. Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B 2008, 91, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Głuszek, A.; Senna Vieira, F.; Hudzikowski, A.; Wąż, A.; Sotor, J.; Foltynowicz, A.; Soboń, G. Compact mode-locked Er-doped fiber laser for broadband cavity-enhanced spectroscopy. Appl. Phys. B 2020, 126, 137. [Google Scholar] [CrossRef]
- Grilli, R.; Méjean, G.; Abd Alrahman, C.; Ventrillard, I.; Kassi, S.; Romanini, D. Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise. Phys. Rev. A 2012, 85, 051804. [Google Scholar] [CrossRef]
- Foltynowicz, A.; Masłowski, P.; Fleisher, A.J.; Bjork, B.J.; Ye, J. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Appl. Phys. B 2013, 110, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Foltynowicz, A.; Ban, T.; Masłowski, P.; Adler, F.; Ye, J. Quantum-Noise-Limited Optical Frequency Comb Spectroscopy. Phys. Rev. Lett. 2011, 107, 233002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, A.C.; Rutkowski, L.; Khodabakhsh, A.; Foltynowicz, A. Signal line shapes of Fourier-transform cavity-enhanced frequency modulation spectroscopy with optical frequency combs. J. Opt. Soc. Am. B 2017, 34, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Joo, K.N.; Kim, S.W. Refractive index measurement by spectrally resolved interferometry using a femtosecond pulse laser. Opt. Lett. 2007, 32, 647–649. [Google Scholar] [CrossRef]
- Park, J.; Jin, J.; Kim, J.A.; Kim, J. Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser. Appl. Phys. Lett. 2016, 109, 244103. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.; Park, J.; Ahn, H.; Jin, J. Total physical thickness measurement of a multi-layered wafer using a spectral-domain interferometer with an optical comb. Opt. Express 2017, 25, 12689–12697. [Google Scholar] [CrossRef]
- Jin, J. Dimensional metrology using the optical comb of a mode-locked laser. Meas. Sci. Technol. 2015, 27, 022001. [Google Scholar] [CrossRef]
- Rovati, L.; Minoni, U.; Bonardi, M.; Docchio, F. Absolute distance measurement using comb-spectrum interferometry. J. Opt. 1998, 29, 121. [Google Scholar] [CrossRef]
- Wojtkowski, M.; Kowalczyk, A.; Leitgeb, R.; Fercher, A.F. Full range complex spectral optical coherence tomography technique in eye imaging. Opt. Lett. 2002, 27, 1415–1417. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, Z.; Wang, H.; Pan, Y. Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique. Opt. Express 2006, 14, 7014–7023. [Google Scholar] [CrossRef] [PubMed]
- Bajraszewski, T.; Wojtkowski, M.; Szkulmowski, M.; Szkulmowska, A.; Huber, R.; Kowalczyk, A. Improved spectral optical coherence tomography using optical frequency comb. Opt. Express 2008, 16, 4163–4176. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.J.; Park, J.S.; Jeong, M.Y.; Kim, C.S.; Eom, T.J.; Yu, B.A.; Gee, S.; Lee, J.; Kim, M.K. Spectrally-sampled OCT for sensitivity improvement from limited optical power. Opt. Express 2008, 16, 17457–17467. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.; Vakoc, B.J. Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography. Opt. Express 2012, 20, 17938–17951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, M.; Nam, A.S.; Tozburun, S.; Lippok, N.; Blatter, C.; Vakoc, B.J. High-speed optical coherence tomography by circular interferometric ranging. Nat. Photonics 2018, 12, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Lexer, F.; Hitzenberger, C.K.; Fercher, A.F.; Kulhavy, M. Wavelength-tuning interferometry of intraocular distances. Appl. Opt. 1997, 36, 6548–6553. [Google Scholar] [CrossRef] [PubMed]
- Lippok, N.; Bouma, B.E.; Vakoc, B.J. Stable multi-megahertz circular-ranging optical coherence tomography at 1.3 μm. Biomed. Opt. Express 2020, 11, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Lippok, N.; Siddiqui, M.; Vakoc, B.J.; Bouma, B.E. Extended Coherence Length and Depth Ranging Using a Fourier-Domain Mode-Locked Frequency Comb and Circular Interferometric Ranging. Phys. Rev. Appl. 2019, 11, 014018. [Google Scholar] [CrossRef] [Green Version]
- Lippok, N.; Vakoc, B.J. Resolving absolute depth in circular-ranging optical coherence tomography by using a degenerate frequency comb. Opt. Lett. 2020, 45, 371–374. [Google Scholar] [CrossRef]
- Bachmann, A.H.; Leitgeb, R.A.; Lasser, T. Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution. Opt. Express 2006, 14, 1487–1496. [Google Scholar] [CrossRef]
- Huber, R.; Wojtkowski, M.; Fujimoto, J.G. Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. Opt. Express 2006, 14, 3225–3237. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.H.; Zhou, C.; Adler, D.C.; Fujimoto, J.G. Frequency comb swept lasers. Opt. Express 2009, 17, 21257–21270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, X.; Yao, X.; Klenner, A.; Gan, Y.; Gaeta, A.L.; Hendon, C.P.; Lipson, M. Chip-based frequency comb sources for optical coherence tomography. Opt. Express 2019, 27, 19896–19905. [Google Scholar] [CrossRef] [PubMed]
- Marchand, P.J.; Riemensberger, J.; Skehan, J.C.; Ho, J.J.; Pfeiffer, M.H.; Liu, J.; Hauger, C.; Lasser, T.; Kippenberg, T.J. Soliton microcomb based spectral domain optical coherence tomography. Nat. Commun. 2021, 12, 427. [Google Scholar] [CrossRef]
- Ji, X.; Mojahed, D.; Okawachi, Y.; Gaeta, A.L.; Hendon, C.P.; Lipson, M. Millimeter-scale chip–based supercontinuum generation for optical coherence tomography. Sci. Adv. 2021, 7, eabg8869. [Google Scholar] [CrossRef]
- Bauters, J.F.; Heck, M.J.R.; John, D.D.; Barton, J.S.; Bruinink, C.M.; Leinse, A.; Heideman, R.G.; Blumenthal, D.J.; Bowers, J.E. Planar waveguides with less than 01 dB/m propagation loss fabricated with wafer bonding. Opt. Express 2011, 19, 24090. [Google Scholar] [CrossRef]
- Bru, L.A.; Pastor, D.; Muñoz, P. Integrated optical frequency domain reflectometry device for characterization of complex integrated devices. Opt. Express 2018, 26, 30000. [Google Scholar] [CrossRef]
- Von Der Weid, J.; Passy, R.; Mussi, G.; Gisin, N. On the characterization of optical fiber network components with optical frequency domain reflectometry. J. Light. Technol. 1997, 15, 1131–1141. [Google Scholar] [CrossRef]
- Moore, E.D. Advances in Swept-Wavelength Interferometry for Precision Measurements. Ph.D. Thesis, University of Colorado at Boulder, Boulder, CO, USA, 2011. [Google Scholar]
- Fontaine, N.K.; Ryf, R.; Mestre, M.A.; Guan, B.; Palou, X.; Randel, S.; Sun, Y.; Grüner-Nielsen, L.; Jensen, R.V.; Lingle, R. Characterization of Space-Division Multiplexing Systems using a Swept-Wavelength Interferometer. In Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, Anaheim, CA, USA, 17–21 March 2013; p. OW1K.2. [Google Scholar] [CrossRef]
- Carpenter, J.; Eggleton, B.J.; Schröder, J. Reconfigurable spatially-diverse optical vector network analyzer. Opt. Express 2014, 22, 2706. [Google Scholar] [CrossRef]
- Mazur, M.; Fontaine, N.K.; Ryf, R.; Marotta, A.; Chen, H.; Hayashi, T.; Nagashima, T.; Nakanishi, T.; Morishima, T.; Graziosi, F.; et al. Transfer Matrix Characterization of Field-Deployed MCFs. In Proceedings of the 2020 IEEE European Conference on Optical Communications (ECOC), Brussels, Belgium, 6–10 December 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Yun, S.H.; Tearney, G.J.; de Boer, J.F.; Iftimia, N.; Bouma, B.E. High-speed optical frequency-domain imaging. Opt. Express 2003, 11, 2953–2963. [Google Scholar] [CrossRef] [Green Version]
- Klein, T.; Huber, R. High-speed OCT light sources and systems [Invited]. Biomed. Opt. Express 2017, 8, 828. [Google Scholar] [CrossRef] [PubMed]
- Soller, B.J.; Gifford, D.K.; Wolfe, M.S.; Froggatt, M.E. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Express 2005, 13, 666–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badar, M.; Lu, P.; Buric, M.; Ohodnicki Jr, P. Integrated Auxiliary Interferometer for Self-Correction of Nonlinear Tuning in Optical Frequency Domain Reflectometry. J. Light. Technol. 2020, 38, 6097–6103. [Google Scholar] [CrossRef]
- Glombitza, U.; Brinkmeyer, E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides. J. Light. Technol. 1993, 11, 1377–1384. [Google Scholar] [CrossRef]
- Takada, K. High-resolution OFDR with incorporated fiber-optic frequency encoder. IEEE Photonics Technol. Lett 1992, 4, 1069–1072. [Google Scholar] [CrossRef]
- Moore, E.D.; McLeod, R.R. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry. Opt. Express 2008, 16, 13139–13149. [Google Scholar] [CrossRef]
- Roos, P.A.; Reibel, R.R.; Berg, T.; Kaylor, B.; Barber, Z.W.; Babbitt, W.R. Ultrabroadband optical chirp linearization for precision metrology applications. Opt. Lett. 2009, 34, 3692–3694. [Google Scholar] [CrossRef]
- Fujii, S.; Tanabe, T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics 2020, 9, 1087–1104. [Google Scholar] [CrossRef] [Green Version]
- Twayana, K.; Ye, Z.; Helgason, Ó.B.; Vijayan, K.; Karlsson, M.; Torres-Company, V. Frequency-comb-calibrated swept-wavelength interferometry. Opt. Express 2021, 29, 24363–24372. [Google Scholar] [CrossRef]
- Baumann, E.; Giorgetta, F.R.; Coddington, I.; Sinclair, L.C.; Knabe, K.; Swann, W.C.; Newbury, N.R. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements. Opt. Lett. 2013, 38, 2026–2028. [Google Scholar] [CrossRef]
- Yu, W.; Pfeiffer, P.; Morsali, A.; Yang, J.; Fontaine, J. Comb-calibrated frequency sweeping interferometry for absolute distance and vibration measurement. Opt. Lett. 2019, 44, 5069–5072. [Google Scholar] [CrossRef] [PubMed]
- Baumann, E.; Giorgetta, F.R.; Deschênes, J.D.; Swann, W.C.; Coddington, I.; Newbury, N.R. Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance. Opt. Express 2014, 22, 24914–24928. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, M.H.P.; Herkommer, C.; Liu, J.; Morais, T.; Zervas, M.; Geiselmann, M.; Kippenberg, T.J. Photonic damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–11. [Google Scholar] [CrossRef]
- Quimby, R.S. Photonics and Lasers: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kolb, J.P.; Klein, T.; Eibl, M.; Pfeiffer, T.; Wieser, W.; Huber, R. Megahertz FDML laser with up to 143nm sweep range for ultrahigh resolution OCT at 1050 nm. In Proceedings of the Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX, San Francisco, CA, USA, 13–18 February 2016; Volume 9697, pp. 2–9. [Google Scholar]
- Huber, R.; Adler, D.C.; Fujimoto, J.G. Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett. 2006, 31, 2975–2977. [Google Scholar] [CrossRef] [PubMed]
- Adler, D.C.; Chen, Y.; Huber, R.; Schmitt, J.; Connolly, J.; Fujimoto, J.G. Three-dimensional endomicroscopy using optical coherence tomography. Nat. Photonics 2007, 1, 709–716. [Google Scholar] [CrossRef]
- Adler, D.C.; Huang, S.W.; Huber, R.; Fujimoto, J.G. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Opt. Express 2008, 16, 4376. [Google Scholar] [CrossRef]
- Eigenwillig, C.M.; Biedermann, B.R.; Palte, G.; Huber, R. K-space linear Fourier domain mode locked laser and applications for optical coherence tomography. Opt. Express 2008, 16, 8916. [Google Scholar] [CrossRef]
- Jeon, M.Y.; Zhang, J.; Chen, Z. Characterization of Fourier domain modelocked wavelength swept laser for optical coherence tomography imaging. Opt. Express 2008, 16, 3727. [Google Scholar] [CrossRef] [Green Version]
- Amano, T.; Hiro-Oka, H.; Choi, D.; Furukawa, H.; Kano, F.; Takeda, M.; Nakanishi, M.; Shimizu, K.; Ohbayashi, K. Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser. Appl. Opt. 2005, 44, 808. [Google Scholar] [CrossRef]
- Yang, T.; Wei, X.; Kong, C.; Tan, S.; Tsia, K.K.; Wong, K.K. An ultrafast wideband discretely swept fiber laser. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1–5. [Google Scholar] [CrossRef]
- Huang, D.; Li, F.; Shang, C.; Cheng, Z.; Chu, S.; Wai, P. Frequency comb swept laser with a high-Q microring filter. Photonics Res. 2020, 8, 904–911. [Google Scholar] [CrossRef]
- Drexler, W.; Liu, M.; Kumar, A.; Kamali, T.; Unterhuber, A.; Leitgeb, R.A. Optical coherence tomography today: Speed, contrast, and multimodality. J. Biomed. Opt 2014, 19, 071412. [Google Scholar] [CrossRef] [PubMed]
- Janssen, J. An Experimental ‘Stroboscopic’ Oscilloscope for Frequencies up to about 50 Mc/s: I. Fundamentals. Philips Tech. Rev. Philips Res. Lab. 1950, 12, 52–59. [Google Scholar]
- Janssen, J.; Michels, A. An Experimental ‘Stroboscopic’ Oscilloscope for Frequencies up to about 50 Mc/s: II. Electrical Build-Up. Philips Tech. Rev. Philips Res. Lab. 1950, 12, 73–82. [Google Scholar]
- Duguay, M.; Hansen, J. Optical sampling of subnanosecond light pulses. Appl. Phys. Lett. 1968, 13, 178–180. [Google Scholar] [CrossRef]
- Andrekson, P. Picosecond optical sampling using four-wave mixing in fibre. Electron. Lett. 1991, 27, 1440–1441. [Google Scholar] [CrossRef]
- Takara, H.; Kawanishi, S.; Morioka, T.; Mori, K.; Saruwatari, M. 100 Gbit/s optical waveform measurement with 0.6 ps resolution optical sampling using subpicosecond supercontinuum pulses. Electron. Lett. 1994, 30, 1152–1153. [Google Scholar] [CrossRef]
- Nelson, B.; Doran, N. Optical sampling oscilloscope using nonlinear fibre loop mirror. Electron. Lett. 1991, 27, 204–205. [Google Scholar] [CrossRef]
- Andrekson, P.A.; Westlund, M. Nonlinear Optical Fiber Based High Resolution All-Optical Waveform Sampling. Laser Photonics Rev. 2007, 1, 231–248. [Google Scholar] [CrossRef]
- Dorrer, C.; Kilper, D.; Stuart, H.; Raybon, G.; Raymer, M. Linear Optical Sampling. IEEE Photonics Technol. Lett. 2003, 15, 1746–1748. [Google Scholar] [CrossRef]
- Schmidt-Langhorst, C.; Weber, H.G. Optical Sampling Techniques. J. Opt. Fiber Commun. Rep. 2005, 2, 86–114. [Google Scholar] [CrossRef]
- Ferdous, F.; Leaird, D.E.; Huang, C.B.; Weiner, A.M. Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization. Opt. Lett. 2009, 34, 3875–3877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coddington, I.; Swann, W.C.; Newbury, N.R. Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs. Phys. Rev. Lett. 2008, 100, 013902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, J.; Deschênes, J.D.; Potvin, S.; Genest, J. Continuous real-time correction and averaging for frequency comb interferometry. Opt. Express 2012, 20, 21932–21939. [Google Scholar] [CrossRef]
- Durán, V.; Tainta, S.; Torres-Company, V. Ultrafast electrooptic dual-comb interferometry. Opt. Express 2015, 23, 30557–30569. [Google Scholar] [CrossRef] [Green Version]
- Martín-Mateos, P.; Jerez, B.; Acedo, P. Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy. Opt. Express 2015, 23, 21149–21158. [Google Scholar] [CrossRef]
- Millot, G.; Pitois, S.; Yan, M.; Hovhannisyan, T.; Bendahmane, A.; Hänsch, T.W.; Picqué, N. Frequency-agile dual-comb spectroscopy. Nat. Photonics 2016, 10, 27–30. [Google Scholar] [CrossRef]
- Carlson, D.R.; Hickstein, D.D.; Papp, S.B. Broadband, electro-optic, dual-comb spectrometer for linear and nonlinear measurements. Opt. Express 2020, 28, 29148–29154. [Google Scholar] [CrossRef]
- Teleanu, E.L.; Durán, V.; Torres-Company, V. Electro-optic dual-comb interferometer for high-speed vibrometry. Opt. Express 2017, 25, 16427–16436. [Google Scholar] [CrossRef] [Green Version]
- Martín-Mateos, P.; Khan, F.U.; Bonilla-Manrique, O.E. Direct hyperspectral dual-comb imaging. Optica 2020, 7, 199–202. [Google Scholar] [CrossRef]
- Imrul Kayes, M.; Rochette, M. Fourier transform spectroscopy by repetition rate sweeping of a single electro-optic frequency comb. Opt. Lett. 2018, 43, 967. [Google Scholar] [CrossRef] [PubMed]
- Carlson, D.R.; Hickstein, D.D.; Cole, D.C.; Diddams, S.A.; Papp, S.B. Dual-comb interferometry via repetition rate switching of a single frequency comb. Opt. Lett. 2018, 43, 3614. [Google Scholar] [CrossRef] [PubMed]
- Newbury, N.R.; Coddington, I.; Swann, W. Sensitivity of coherent dual-comb spectroscopy. Opt. Express 2010, 18, 7929. [Google Scholar] [CrossRef] [PubMed]
- Durán, V.; Andrekson, P.A.; Torres-Company, V. Electro-optic dual-comb interferometry over 40 nm bandwidth. Opt. Lett. 2016, 41, 4190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shams-Ansari, A.; Yu, M.; Chen, Z.; Reimer, C.; Zhang, M.; Picqué, N.; Loncar, M. Microring Electro-Optic Frequency Comb Sources for Dual-Comb Spectroscopy. In Proceedings of the 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 May 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Wang, S.; Fan, X.; Xu, B.; Wang, B.; Du, J.; He, Z. Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate. Opt. Lett. 2018, 43, 3441–3444. [Google Scholar] [CrossRef]
- Mazur, M.; Fontaine, N.K.; Karlsson, M.; Andrekson, P.A.; Torres-Company, V.; Schröder, J. Dual-Comb Swept Wavelength Interferometry. In Proceedings of the Conference on Lasers and Electro-Optics, Washington, DC, USA, 10–15 May 2020; OSA: Washington, DC, USA, 2020; p. JW2B.23. [Google Scholar] [CrossRef]
- Deriushkina, E.; Salgado, I.R.; Mazur, M.; Torres-Company, V.; Andrekson, P.; Gross, S.; Withford, M.J.; Hayashi, T.; Nagashima, T.; Schröder, J.; et al. Characterisation of a Coupled-Core Fiber Using Dual-Comb Swept-Wavelength Interferometry. In Proceedings of the 2021 European Conference on Optical Communication (ECOC), Bordeaux, France, 13–16 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Fontaine, N.K.; Scott, R.P.; Zhou, L.; Soares, F.M.; Heritage, J.P.; Yoo, S.J.B. Real-time full-field arbitrary optical waveform measurement. Nat. Photonics 2010, 4, 248–254. [Google Scholar] [CrossRef]
- Fischer, J.K.; Ludwig, R.; Molle, L.; Schmidt-Langhorst, C.; Leonhardt, C.C.; Matiss, A.; Schubert, C. High-Speed Digital Coherent Receiver Based on Parallel Optical Sampling. J. Lightwave Technol. 2011, 29, 378–385. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, N.K.; Raybon, G.; Guan, B.; Adamiecki, A.; Winzer, P.J.; Ryf, R.; Konczykowska, A.; Jorge, F.; Dupuy, J.Y.; Buhl, L.L.; et al. 228-GHz Coherent Receiver Using Digital Optical Bandwidth Interleaving and Reception of 214-GBd (856-Gb/s) PDM-QPSK. In Proceedings of the European Conference and Exhibition on Optical Communication (2012); Optical Society of America: Amsterdam, The Netherlands, 2012; p. Th.3.A.1. [Google Scholar] [CrossRef]
- Fang, D.; Drayss, D.; Lihachev, G.; Marin-Palomo, P.; Peng, H.; Füllner, C.; Kuzmin, A.; Liu, J.; Wang, R.; Snigirev, V.; et al. 320 GHz Analog-to-Digital Converter Exploiting Kerr Soliton Combs and Photonic-Electronic Spectral Stitching. In Proceedings of the 2021 European Conference on Optical Communication (ECOC), Bordeaux, France, 13–16 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Picqué, N.; Guelachvili, G. Femtosecond Frequency Combs: New trends for Fourier transform spectroscopy. In Proceedings of the Fourier Transform Spectroscopy/Hyperspectral Imaging and Sounding of the Environment; Optical Society of America: Alexandria, VA, USA, 2005; p. FTuA2. [Google Scholar] [CrossRef]
- Keilmann, F.; Gohle, C.; Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 2004, 29, 1542–1544. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Hänsch, T.W.; Picqué, N. Mid-infrared feed-forward dual-comb spectroscopy. Proc. Natl. Acad. Sci. USA 2019, 116, 3454–3459. [Google Scholar] [CrossRef] [Green Version]
- Smolski, V.; Lee, K.; Mohr, C.; Jiang, J.; Hartl, I.; Fermann, M.; Vodopyanov, K. Phase locked system for dual comb molecular spectroscopy at 2–6 μm based on tm-fiber laser. In Proceedings of the 2014 IEEE Conference on Lasers and Electro-Optics (CLEO)-Laser Science to Photonic Applications, San Jose, CA, USA, 8–13 June 2014; pp. 1–2. [Google Scholar]
- Adler, F.; Masłowski, P.; Foltynowicz, A.; Cossel, K.C.; Briles, T.C.; Hartl, I.; Ye, J. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express 2010, 18, 21861–21872. [Google Scholar] [CrossRef]
- Erny, C.; Moutzouris, K.; Biegert, J.; Kühlke, D.; Adler, F.; Leitenstorfer, A.; Keller, U. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source. Opt. Lett. 2007, 32, 1138–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Gardiner, T.; Reid, D.T. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator. Opt. Lett. 2013, 38, 3148–3150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vainio, M.; Halonen, L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 4266–4294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-infrared frequency combs. Nat. Photonics 2012, 6, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yan, M.; Hänsch, T.W.; Picqué, N. A phase-stable dual-comb interferometer. Nat. Commun. 2018, 9, 3035. [Google Scholar] [CrossRef]
- Zolot, A.; Giorgetta, F.; Baumann, E.; Swann, W.; Coddington, I.; Newbury, N. Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene. J. Quant. Spectrosc. Radiat. Transf. 2013, 118, 26–39. [Google Scholar] [CrossRef]
- Feld, M.S.; Javan, A. Laser-Induced Line-Narrowing Effects in Coupled Doppler-Broadened Transitions. Phys. Rev. 1969, 177, 540–562. [Google Scholar] [CrossRef]
- Foltynowicz, A.; Rutkowski, L.; Silander, I.; Johansson, A.C.; Silva de Oliveira, V.; Axner, O.; Soboń, G.; Martynkien, T.; Mergo, P.; Lehmann, K.K. Sub-Doppler Double-Resonance Spectroscopy of Methane Using a Frequency Comb Probe. Phys. Rev. Lett. 2021, 126, 063001. [Google Scholar] [CrossRef]
- Long, D.A.; Fleisher, A.J.; Plusquellic, D.F.; Hodges, J.T. Multiplexed sub-Doppler spectroscopy with an optical frequency comb. Phys. Rev. A 2016, 94, 061801. [Google Scholar] [CrossRef] [Green Version]
- Hébert, N.B.; Michaud-Belleau, V.; Perrella, C.; Truong, G.W.; Anstie, J.D.; Stace, T.M.; Genest, J.; Luiten, A.N. Real-time dynamic atomic spectroscopy using electro-optic frequency combs. Phys. Rev. Appl. 2016, 6, 044012. [Google Scholar] [CrossRef] [Green Version]
- Rieker, G.B.; Giorgetta, F.R.; Swann, W.C.; Kofler, J.; Zolot, A.M.; Sinclair, L.C.; Baumann, E.; Cromer, C.; Petron, G.; Sweeney, C.; et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 2014, 1, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Reiche, N.; Westerkamp, T.; Lau, S.; Borsdorf, H.; Dietrich, P.; Schütze, C. Comparative study to evaluate three ground-based optical remote sensing techniques under field conditions by a gas tracer experiment. Environ. Earth Sci. 2014, 72, 1435–1441. [Google Scholar] [CrossRef]
- Waxman, E.M.; Cossel, K.C.; Truong, G.W.; Giorgetta, F.R.; Swann, W.C.; Coburn, S.; Wright, R.J.; Rieker, G.B.; Coddington, I.; Newbury, N.R. Intercomparison of open-path trace gas measurements with two dual-frequency-comb spectrometers. Atmos. Meas. Tech. 2017, 10, 3295–3311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoma, E.D.; Shores, R.C.; Thompson, E.L.; Harris, D.B.; Thorneloe, S.A.; Varma, R.M.; Hashmonay, R.A.; Modrak, M.T.; Natschke, D.F.; Gamble, H.A. Open-Path Tunable Diode Laser Absorption Spectroscopy for Acquisition of Fugitive Emission Flux Data. J. Air Waste Manag. Assoc. 2005, 55, 658–668. [Google Scholar] [CrossRef]
- Ideguchi, T.; Bernhardt, B.; Guelachvili, G.; Hänsch, T.W.; Picqué, N. Raman-induced Kerr-effect dual-comb spectroscopy. Opt. Lett. 2012, 37, 4498–4500. [Google Scholar] [CrossRef] [Green Version]
- Hipke, A.; Meek, S.A.; Ideguchi, T.; Hänsch, T.W.; Picqué, N. Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs. Phys. Rev. A 2014, 90, 011805. [Google Scholar] [CrossRef] [Green Version]
- Asahara, A.; Minoshima, K. Development of ultrafast time-resolved dual-comb spectroscopy. APL Photonics 2017, 2, 041301. [Google Scholar] [CrossRef] [Green Version]
- Weiner, A.M.; Leaird, D.E.; Wiederrecht, G.P.; Nelson, K.A. Femtosecond multiple-pulse impulsive stimulated Raman scattering spectroscopy. J. Opt. Soc. Am. B 1991, 8, 1264–1275. [Google Scholar] [CrossRef]
- Yan, Y.X.; Gamble, E.B., Jr.; Nelson, K.A. Impulsive stimulated scattering: General importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. J. Chem. Phys. 1985, 83, 5391–5399. [Google Scholar] [CrossRef]
- Kameyama, R.; Takizawa, S.; Hiramatsu, K.; Goda, K. Dual-comb coherent Raman spectroscopy with near 100% duty cycle. ACS Photonics 2020, 8, 975–981. [Google Scholar] [CrossRef]
- Mohler, K.J.; Bohn, B.J.; Yan, M.; Mélen, G.; Hänsch, T.W.; Picqué, N. Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency. Opt. Lett. 2017, 42, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Coluccelli, N.; Howle, C.R.; McEwan, K.; Wang, Y.; Fernandez, T.T.; Gambetta, A.; Laporta, P.; Galzerano, G. Fiber-format dual-comb coherent Raman spectrometer. Opt. Lett. 2017, 42, 4683–4686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomsadze, B.; Cundiff, S.T. Frequency comb-based four-wave-mixing spectroscopy. Opt. Lett. 2017, 42, 2346–2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weichman, M.L.; Changala, P.B.; Ye, J.; Chen, Z.; Yan, M.; Picqué, N. Broadband molecular spectroscopy with optical frequency combs. J. Mol. Spectrosc. 2019, 355, 66–78. [Google Scholar] [CrossRef]
- Foltynowicz, A.; Masłowski, P.; Ban, T.; Adler, F.; Cossel, K.; Briles, T.; Ye, J. Optical frequency comb spectroscopy. Faraday Discuss. 2011, 150, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Taiji, S.; Takayoshi, M.; Masaki, W.; Takashi, Y.; Fumihiko, Y.; Kazuhide, N. Strongly-coupled multi-core fiber and its optical characteristics for MIMO transmission systems. Opt. Fiber Technol. 2017, 35, 8. [Google Scholar] [CrossRef]
- Kunimasa, S.; Shoichiro, M. Multicore fibers for large capacity transmission. Nanophotonics 2013, 2, 441. [Google Scholar] [CrossRef]
- Supradeepa, V.R.; Long, C.M.; Leaird, D.E.; Weiner, A.M. Fast characterization of dispersion and dispersion slope of optical fiber links using spectral interferometry with frequency combs. IEEE Photonics Technol. Lett. 2009, 22, 155–157. [Google Scholar] [CrossRef] [Green Version]
- Soriano-Amat, M.; Martins, H.F.; Durán, V.; Costa, L.; Martin-Lopez, S.; Gonzalez-Herraez, M.; Fernández-Ruiz, M.R. Time-expanded phase-sensitive optical time-domain reflectometry. Light Sci. Appl. 2021, 10, 51. [Google Scholar] [CrossRef]
- De Boer, J.F.; Leitgeb, R.; Wojtkowski, M. Twenty-five years of optical coherence tomography: The paradigm shift in sensitivity and speed provided by Fourier domain OCT. Biomed. Opt. Express 2017, 8, 3248–3280. [Google Scholar] [CrossRef] [Green Version]
- Choma, M.A.; Sarunic, M.V.; Yang, C.; Izatt, J.A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 2003, 11, 2183–2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Boer, J.F.; Cense, B.; Park, B.H.; Pierce, M.C.; Tearney, G.J.; Bouma, B.E. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 2003, 28, 2067–2069. [Google Scholar] [CrossRef] [PubMed]
- Fercher, A.; Hitzenberger, C.; Kamp, G.; El-Zaiat, S. Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 1995, 117, 43–48. [Google Scholar] [CrossRef]
- Pfeiffer, T.; Petermann, M.; Draxinger, W.; Jirauschek, C.; Huber, R. Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography. Biomed. Opt. Express 2018, 9, 4130–4148. [Google Scholar] [CrossRef]
- Slepneva, S.; Kelleher, B.; O’Shaughnessy, B.; Hegarty, S.; Vladimirov, A.; Huyet, G. Dynamics of Fourier domain mode-locked lasers. Opt. Express 2013, 21, 19240–19251. [Google Scholar] [CrossRef]
- Ye, Z.; Zhao, P.; Twayana, K.; Karlsson, M.; Torres-Company, V.; Andrekson, P.A. Overcoming the quantum limit of optical amplification in monolithic waveguides. Sci. Adv. 2021, 7, eabi8150. [Google Scholar] [CrossRef]
- Li, J.; Westlund, M.; Sunnerud, H.; Olsson, B.E.; Karlsson, M.; Andrekson, P. 0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber. IEEE Photonics Technol. Lett. 2004, 16, 566–568. [Google Scholar] [CrossRef]
- Hellström, E.; Sunnerud, H.; Westlund, M.; Karlsson, M. Third-order dispersion compensation using a phase modulator. J. Lightwave Technol. 2003, 21, 1188–1197. [Google Scholar] [CrossRef]
- Sköld, M.; Westlund, M.; Sunnerud, H.; Andrekson, P.A. All-optical waveform sampling in high-speed optical communication systems using advanced modulation formats. J. Lightwave Technol. 2009, 27, 3662–3671. [Google Scholar] [CrossRef]
- Wiberg, A.O.J.; Esman, D.J.; Liu, L.; Adleman, J.R.; Zlatanovic, S.; Ataie, V.; Myslivets, E.; Kuo, B.P.P.; Alic, N.; Jacobs, E.W.; et al. Coherent Filterless Wideband Microwave/Millimeter-Wave Channelizer Based on Broadband Parametric Mixers. J. Lightwave Technol. 2014, 32, 3609–3617. [Google Scholar] [CrossRef]
- Lundberg, L.; Karlsson, M.; Lorences-Riesgo, A.; Mazur, M.; Schröder, J.; Andrekson, P.A. Frequency comb-based WDM transmission systems enabling joint signal processing. Appl. Sci. 2018, 8, 718. [Google Scholar] [CrossRef] [Green Version]
- Mazur, M.; Lorences-Riesgo, A.; Schröder, J.; Andrekson, P.A.; Karlsson, M. 10 Tb/s PM-64QAM self-homodyne comb-based superchannel transmission with 4% shared pilot tone overhead. J. Lightwave Technol. 2018, 36, 3176–3184. [Google Scholar] [CrossRef]
- Mazur, M.; Lorences-Riesgo, A.; Schroeder, J.; Andrekson, P.A.; Karlsson, M. High spectral efficiency PM-128QAM comb-based superchannel transmission enabled by a single shared optical pilot tone. J. Lightwave Technol. 2018, 36, 1318–1325. [Google Scholar] [CrossRef]
- Lundberg, L.; Mazur, M.; Fülöp, A.; Karlsson, M.; Andrekson, P.A. Phase correlation between lines of electro-optical frequency combs. In CLEO: Science and Innovations; Optical Society of America: San Jose, CA, USA, 2018; p. JW2A-149. [Google Scholar]
- Lundberg, L.; Mazur, M.; Mirani, A.; Foo, B.; Schröder, J.; Torres-Company, V.; Karlsson, M.; Andrekson, P.A. Phase-coherent lightwave communications with frequency combs. Nat. Commun. 2020, 11, 201. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Han, X.; Deng, G.; Zhou, Q.; Qiu, K.; Zhou, H. Coherent optical communications using coherence-cloned Kerr soliton microcombs as carriers and local oscillators. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), Virtual, 6–10 June 2021. [Google Scholar]
- Hu, H.; Ataie, V.; Myslivets, E.; Radic, S. Optical Comb Assisted OFDM RF Receiver. J. Lightwave Technol. 2019, 37, 1280–1287. [Google Scholar] [CrossRef]
- Van Gasse, K.; Uvin, S.; Moskalenko, V.; Latkowski, S.; Roelkens, G.; Bente, E.; kuyken, B. Recent Advances in the Photonic Integration of Mode-Locked Laser Diodes. IEEE Photonics Technol. Lett. 2019, 31, 1870–1873. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Reimer, C.; Barton, D.; Kharel, P.; Cheng, R.; He, L.; Shao, L.; Zhu, D.; Hu, Y.; Grant, H.R.; et al. Femtosecond Pulse Generation via an Integrated Electro-Optic Time Lens. arXiv 2021, arXiv:2112.09204. [Google Scholar]
- Suh, M.G.; Yang, Q.F.; Yang, K.Y.; Yi, X.; Vahala, K.J. Microresonator soliton dual-comb spectroscopy. Science 2016, 354, 600–603. [Google Scholar] [CrossRef] [Green Version]
- Suh, M.G.; Vahala, K.J. Soliton microcomb range measurement. Science 2018, 359, 884–887. [Google Scholar] [CrossRef] [Green Version]
- Trocha, P.; Karpov, M.; Ganin, D.; Pfeiffer, M.H.P.; Kordts, A.; Wolf, S.; Krockenberger, J.; Marin-Palomo, P.; Weimann, C.; Randel, S.; et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 2018, 359, 887–891. [Google Scholar] [CrossRef] [Green Version]
- Riemensberger, J.; Lukashchuk, A.; Karpov, M.; Weng, W.; Lucas, E.; Liu, J.; Kippenberg, T.J. Massively parallel coherent laser ranging using a soliton microcomb. Nature 2020, 581, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Shao, L.; Yu, M.; Cheng, R.; Desiatov, B.; Xin, C.J.; Hu, Y.; Holzgrafe, J.; Ghosh, S.; Shams-Ansari, A.; et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 2021, 13, 242–352. [Google Scholar] [CrossRef]
- Liu, J.; Tian, H.; Lucas, E.; Raja, A.S.; Lihachev, G.; Wang, R.N.; He, J.; Liu, T.; Anderson, M.H.; Weng, W.; et al. Monolithic piezoelectric control of soliton microcombs. Nature 2020, 583, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Guo, J.; Jin, W.; Wu, L.; Peters, J.; Xie, W.; Chang, L.; Shen, B.; Wang, H.; Yang, Q.F.; et al. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun. 2021, 12, 6650. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Herkommer, C.; Billat, A.; Grassani, D.; Zhang, C.; Pfeiffer, M.H.; Weng, W.; Bres, C.S.; Kippenberg, T.J. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics 2018, 12, 330–335. [Google Scholar] [CrossRef]
- Porcel, M.A.G.; Schepers, F.; Epping, J.P.; Hellwig, T.; Hoekman, M.; Heideman, R.G.; van der Slot, P.J.M.; Lee, C.J.; Schmidt, R.; Bratschitsch, R.; et al. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Opt. Express 2017, 25, 1542–1554. [Google Scholar] [CrossRef]
- Bao, C.; Yuan, Z.; Wu, L.; Suh, M.G.; Wang, H.; Lin, Q.; Vahala, K.J. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nat. Commun. 2021, 12, 6573. [Google Scholar] [CrossRef]
- Snigirev, V.; Riedhauser, A.; Lihachev, G.; Riemensberger, J.; Wang, R.N.; Moehl, C.; Churaev, M.; Siddharth, A.; Huang, G.; Popoff, Y.; et al. Ultrafast tunable lasers using lithium niobate integrated photonics. arXiv 2021, arXiv:2112.02036. [Google Scholar]
- Lomsadze, B.; Smith, B.C.; Cundiff, S.T. Tri-comb spectroscopy. Nat. Photonics 2018, 12, 676–680. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Roelkens, G.; Baets, R.; Bowers, J.E. Hybrid Integrated Platforms for Silicon Photonics. Materials 2010, 3, 1782–1802. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Muliuk, G.; Juvert, J.; Kumari, S.; Goyvaerts, J.; Haq, B.; de Beeck, C.; Kuyken, B.; Morthier, G.; Van Thourhout, D.; et al. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photonics 2019, 4, 110803. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Yang, Q.F.; Zhang, X.; Yang, K.Y.; Li, X.; Vahala, K. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun. 2017, 8, 14869. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.F.; Ji, Q.X.; Wu, L.; Shen, B.; Wang, H.; Bao, C.; Yuan, Z.; Vahala, K. Dispersive-wave induced noise limits in miniature soliton microwave sources. Nat. Commun. 2021, 12, 1442. [Google Scholar] [CrossRef] [PubMed]
- Drake, T.E.; Stone, J.R.; Briles, T.C.; Papp, S.B. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photonics 2020, 14, 480–485. [Google Scholar] [CrossRef]
- Lei, F.; Ye, Z.; Fülöp, A.; Torres-Company, V. Fundamental optical linewidth of soliton microcombs. arXiv 2021, arXiv:2102.05517. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Twayana, K.; Rebolledo-Salgado, I.; Deriushkina, E.; Schröder, J.; Karlsson, M.; Torres-Company, V. Spectral Interferometry with Frequency Combs. Micromachines 2022, 13, 614. https://doi.org/10.3390/mi13040614
Twayana K, Rebolledo-Salgado I, Deriushkina E, Schröder J, Karlsson M, Torres-Company V. Spectral Interferometry with Frequency Combs. Micromachines. 2022; 13(4):614. https://doi.org/10.3390/mi13040614
Chicago/Turabian StyleTwayana, Krishna, Israel Rebolledo-Salgado, Ekaterina Deriushkina, Jochen Schröder, Magnus Karlsson, and Victor Torres-Company. 2022. "Spectral Interferometry with Frequency Combs" Micromachines 13, no. 4: 614. https://doi.org/10.3390/mi13040614
APA StyleTwayana, K., Rebolledo-Salgado, I., Deriushkina, E., Schröder, J., Karlsson, M., & Torres-Company, V. (2022). Spectral Interferometry with Frequency Combs. Micromachines, 13(4), 614. https://doi.org/10.3390/mi13040614