Thermal Management of Serpentine Flexible Heater Based on the Orthotropic Heat Conduction Model
Abstract
:1. Introduction
2. Analytical Modeling
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hattori, Y.; Falgout, L.; Lee, W.; Jung, S.Y.; Poon, E.; Lee, J.W.; Na, I.; Geisler, A.; Sadhwani, D.; Zhang, Y. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv. Healthc. Mater. 2014, 3, 1597–1607. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sheng, H.; Lv, Y.; Liang, J.; Liu, Y.; Li, N.; Xie, E.; Su, Q.; Ershad, F.; Lan, W. A Skin-Mountable Hyperthermia Patch Based on Metal Nanofiber Network with High Transparency and Low Resistivity toward Subcutaneous Tumor Treatment. Adv. Funct. Mater. 2022, 2111228. [Google Scholar] [CrossRef]
- Tamayol, A.; Hassani, N.A.; Mostafalu, P.; Yetisen, A.K.; Commotto, M.; Aldhahri, M.; Abdel-Wahab, M.S.; Najafabadi, Z.I.; Latifi, S.; Akbari, M. Biodegradable elastic nanofibrous platforms with integrated flexible heaters for on-demand drug delivery. Sci. Rep. 2017, 7, 1–10. [Google Scholar]
- Hong, S.; Lee, H.; Lee, J.; Kwon, J.; Han, S.; Suh, Y.D.; Cho, H.; Shin, J.; Yeo, J.; Ko, S.H. Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications. Adv. Mater. 2015, 27, 4744–4751. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Raj, L.P.; Jo, J.H.; Cho, M.Y.; Kweon, J.H.; Myong, R.S. Multiphysics anti-icing simulation of a CFRP composite wing structure embedded with thin etched-foil electrothermal heating films in glaze ice conditions. Compos Struct. 2021, 276, 114441. [Google Scholar] [CrossRef]
- Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F.S. Performance materials and coating technologies of thermochromic thin films on smart windows. Renew. Sustain. Energy Rev. 2013, 26, 353–364. [Google Scholar] [CrossRef]
- Kim, D.C.; Shim, H.J.; Lee, W.; Koo, J.H.; Kim, D.H. Material-Based Approaches for the Fabrication of Stretchable Electronics. Adv. Mater. 2020, 32, 1902743. [Google Scholar] [CrossRef]
- An, B.W.; Gwak, E.J.; Kim, K.; Kim, Y.C.; Jang, J.; Kim, J.Y.; Park, J.U. Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability. Nano Lett. 2016, 16, 471–478. [Google Scholar] [CrossRef]
- Jo, H.S.; An, S.; Lee, J.G.; Park, H.G.; Al-Deyab, S.S.; Yarin, A.L.; Yoon, S.S. Highly flexible, stretchable, patternable, transparent copper fiber heater on a complex 3D surface. NPG. Asia Mater. 2017, 9, e347. [Google Scholar] [CrossRef] [Green Version]
- Bilodeau, R.A.; Nasab, A.M.; Shah, D.S.; Kramer-Bottiglio, R. Uniform conductivity in stretchable silicones via multiphase inclusions. Soft Matter 2020, 16, 5827–5839. [Google Scholar] [CrossRef]
- Jang, N.S.; Kim, K.H.; Ha, S.H.; Jung, S.H.; Lee, H.M.; Kim, J.M. Simple approach to high-performance stretchable heaters based on kirigami patterning of conductive paper for wearable thermotherapy applications. ACS Appl. Mater. Interfaces 2017, 9, 19612–19621. [Google Scholar] [CrossRef]
- Chen, X.L.; Yin, Y.F.; Yuan, W.; Nie, S.H.; Lin, Y.; Guo, W.R.; Su, W.M.; Li, Y.H.; Yang, K.; Cui, Z. Transparent Thermotherapeutic Skin Patch Based on Highly Conductive and Stretchable Copper Mesh Heater. Adv. Electron. Mater. 2021, 7, 2100611. [Google Scholar] [CrossRef]
- Fan, Z.C.; Zhang, Y.H.; Ma, Q.; Zhang, F.; Fu, H.R.; Hwang, K.C.; Huang, Y.G. A finite deformation model of planar serpentine interconnects for stretchable electronics. Int. J. Solids Struct. 2016, 91, 46–54. [Google Scholar] [CrossRef]
- Li, K.; Cheng, X.; Zhu, F.; Li, L.; Xie, Z.Q.; Luan, H.W.; Wang, Z.H.; Ji, Z.Y.; Wang, H.L.; Liu, F.; et al. A Generic Soft Encapsulation Strategy for Stretchable Electronics. Adv. Funct. Mater. 2019, 29, 1806630. [Google Scholar] [CrossRef]
- Nie, S.; Cai, M.; Wang, C.J.; Song, J.Z. Fatigue Life Prediction of Serpentine Interconnects on Soft Elastomers for Stretchable Electronics. J. Appl. Mech. 2020, 87, 011011. [Google Scholar] [CrossRef]
- Vemuri, K.P.; Bandaru, P.R. Geometrical considerations in the control and manipulation of conductive heat flux in multilayered thermal metamaterials. Appl. Phys. Lett. 2013, 103, 133111. [Google Scholar] [CrossRef] [Green Version]
- Vemuri, K.P.; Bandaru, P.R. Anomalous refraction of heat flux in thermal metamaterials. Appl. Phys. Lett. 2014, 104, 083901. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Vemuri, K.P.; Bandaru, P.R. Experimental evidence for the bending of heat flux in a thermal metamaterial. Appl. Phys. Lett. 2014, 105, 083908. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Li, Y.H.; Xing, Y.F.; Yang, T.Z.; Song, J.Z. Three-dimensional thermal analysis of rectangular micro-scale inorganic light-emitting diodes integrated with human skin. Int. J. Therm. Sci. 2018, 127, 321–328. [Google Scholar] [CrossRef]
- Zhang, J.P.; Li, Y.H.; Xing, Y.F.; Song, J.Z. Three-dimensional thermomechanical analysis of epidermal electronic devices on human skin. Int. J. Solids Struct. 2019, 167, 48–57. [Google Scholar] [CrossRef]
- Yin, Y.F.; Li, M.; Yuan, W.; Chen, X.L.; Li, Y.H. A widely adaptable analytical method for thermal analysis of flexible electronics with complex heat source structures. Proc. R. Soc. A 2019, 475, 20190402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Chen, J.; Xing, Y.; Song, J. Analytical investigations on the thermal properties of microscale inorganic lightemitting diodes on an orthotropic substrate. AIP Adv. 2017, 7, 035208. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.J.; Sim, K.; Chen, J.; Kim, H.; Rao, Z.Y.; Li, Y.H.; Chen, W.Q.; Song, J.Z.; Verduzco, R.; Yu, C.J. Soft ultrathin electronics innervated adaptive fully soft robots. Adv. Mater. 2018, 30, 1706695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Li, Y.H.; Xing, Y.F.; Ji, Q.G.; Song, J.Z. Thermal design of rectangular microscale inorganic light-emitting diodes. Appl. Therm. Eng. 2017, 122, 653–660. [Google Scholar] [CrossRef]
- Wondu, E.; Lule, Z.; Kim, J. Thermal conductivity and mechanical properties of thermoplastic polyurethane-/silane-modified Al2O3 composite fabricated via melt compounding. Polymers 2018, 11, 1103. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, Y.H.; Lu, C.F.; Song, J.Z.; Saeidpouraza, R.; Fang, B.; Zhong, Y.; Ferreira, P.M.; Rogers, J.A.; Huang, Y.G. Thermo-mechanical modeling of laser-driven non-contact transfer printing: Two-dimensional analysis. Soft Matter 2012, 8, 7122–7127. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Nan, J.; Li, M. Thermal Management of Serpentine Flexible Heater Based on the Orthotropic Heat Conduction Model. Micromachines 2022, 13, 622. https://doi.org/10.3390/mi13040622
Zhao Z, Nan J, Li M. Thermal Management of Serpentine Flexible Heater Based on the Orthotropic Heat Conduction Model. Micromachines. 2022; 13(4):622. https://doi.org/10.3390/mi13040622
Chicago/Turabian StyleZhao, Zhao, Jin Nan, and Min Li. 2022. "Thermal Management of Serpentine Flexible Heater Based on the Orthotropic Heat Conduction Model" Micromachines 13, no. 4: 622. https://doi.org/10.3390/mi13040622
APA StyleZhao, Z., Nan, J., & Li, M. (2022). Thermal Management of Serpentine Flexible Heater Based on the Orthotropic Heat Conduction Model. Micromachines, 13(4), 622. https://doi.org/10.3390/mi13040622