Microfluidic Applications of Artificial Cilia: Recent Progress, Demonstration, and Future Perspectives
Abstract
:1. Introduction
2. From Natural Cilia to Artificial Cilia
3. Fabrication Techniques for Artificial Cilia
3.1. Micro-Molding Fabrication Techniques
3.2. Photolithography Fabrication Techniques
3.3. 3D/4D/5D Printing Fabrication Techniques
3.4. Facile Bottom-Up Approaches
3.5. Roll-Pulling Approaches
3.6. Self-Assembly Fabrication Techniques
3.7. Field-Effect Spinning Approaches
3.8. Dip-Coating Fabrication Techniques
4. Artificial Cilia Actuation Methodologies
4.1. Optical Actuation Techniques
4.2. Electrostatic Actuation Techniques
4.3. pH Actuation Techniques
4.4. Resonance Actuation Techniques
4.5. Magnetic Actuation
4.5.1. Electromagnetic Actuation
4.5.2. Permanent Magnetic Actuation
4.6. Acoustic Actuation Techniques
4.7. Electric Stimulation Actuation Techniques
4.8. Induced Charge Electro-Osmosis Using AC Electric Field Techniques
4.9. Pneumatical Actuation Techniques
4.10. Thermal Actuation Techniques
4.11. Actuation Techniques for Multi-Responsive Artificial Cilia
5. Dynamic Beating Behaviors of Artificial Cilia
5.1. Symmetric Dynamic Beating Behaviors
5.2. Asymmetric Dynamic Beating Behaviors
6. Artificial Cilia for Microfluidic Applications
6.1. Flow Propulsion
6.2. Mixing
6.3. Sensing
6.4. Contemporary Emerging Applications
6.4.1. Zebrafish Research
6.4.2. Minimal Robots/Microrobots and Soft Robots
6.4.3. Wearable Devices/Electro-Devices
6.4.4. Artificial Cilia with Wettability and Hydrophobicity
6.4.5. Energy Harvesting
6.4.6. Antifouling or Self-Cleaning
6.4.7. Photocatalysis
6.4.8. Particle Manipulation
7. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sleigh, M.A. Cilia and Flagella; Elsevier Science & Technology Books: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Mitchison, H.M.; Valente, E.M. Motile and non-motile cilia in human pathology: From function to phenotypes. J. Pathol. 2017, 241, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Ibañez-Tallon, I.; Heintz, N.; Omran, H. To beat or not to beat: Roles of cilia in development and disease. Hum. Mol. Genet. 2003, 12, R27–R35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, J.L.; Witman, G.B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 2002, 3, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Gilpin, W.; Prakash, V.N.; Prakash, M. Vortex arrays and ciliary tangles underlie the feeding–swimming trade-off in starfish larvae. Nat. Phys. 2017, 13, 380. [Google Scholar] [CrossRef]
- Mayne, R.; Whiting, J.G.; Wheway, G.; Melhuish, C.; Adamatzky, A. Particle sorting by Paramecium cilia arrays. Biosystems 2017, 156, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Hirokawa, N.; Tanaka, Y.; Okada, Y.; Takeda, S. Nodal flow and the generation of left-right asymmetry. Cell 2006, 125, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.; Blake, J.; Gaffney, E. Fluid mechanics of nodal flow due to embryonic primary cilia. J. R. Soc. Interface 2008, 5, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Su, P.; Ren, C.; Fu, Y.; Guo, J.; Member, I.; Guo, J.; Yuan, Q. Magnetophoresis in microfluidic lab: Recent advance. Sens. Actuators. A Phys. 2021, 332, 113180. [Google Scholar] [CrossRef]
- Cao, Q.L.; Fan, Q.; Chen, Q.; Liu, C.T.; Han, X.T.; Li, L. Recent advances in manipulation of micro- and nano-objects with magnetic fields at small scales. Mater. Horiz. 2020, 7, 638–666. [Google Scholar] [CrossRef]
- Shanko, E.S.; van de Burgt, Y.; Anderson, P.D.; den Toonder, J.M.J. Microfluidic magnetic mixing at low reynolds numbers and in stagnant fluids. Micromachines 2019, 10, 731. [Google Scholar] [CrossRef] [Green Version]
- Galera, A.C.; San Miguel, V.; Baselga, J. Magneto-mechanical surfaces design. Chem. Rec. 2018, 18, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Yunas, J.; Mulyanti, B.; Hamidah, I.; Mohd Said, M.; Pawinanto, R.E.; Ali, W.; Subandi, A.; Hamzah, A.A.; Latif, R.; Yeop Majlis, B. Polymer-based MEMS electromagnetic actuator for biomedical application: A review. Polymers 2020, 12, 1184. [Google Scholar] [CrossRef]
- Mehta, K.; Peeketi, A.R.; Liu, L.; Broer, D.; Onck, P.; Annabattula, R.K. Design and applications of light responsive liquid crystal polymer thin films. Appl. Phys. Rev. 2020, 7, 041306. [Google Scholar] [CrossRef]
- El-Atab, N.; Mishra, R.B.; Al-Modaf, F.; Joharji, L.; Alsharif, A.A.; Alamoudi, H.; Diaz, M.; Qaiser, N.; Hussain, M.M. Soft actuators for soft robotic applications: A review. Adv. Intell. Syst. 2020, 2, 2000128. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Wang, Y.; Onck, P.; den Toonder, J. A concise review of microfluidic particle manipulation methods. Microfluid. Nanofluid. 2020, 24, 1. [Google Scholar] [CrossRef]
- Xuan, X.C. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. Electrophoresis 2019, 40, 2484–2513. [Google Scholar] [CrossRef]
- You, S.; Li, J.; Zhu, W.; Yu, C.; Mei, D.; Chen, S. Nanoscale 3D printing of hydrogels for cellular tissue engineering. J. Mater. Chem. B 2018, 6, 2187–2197. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Fu, X.; Zhang, D.; Zhao, Y. Tailoring flexible arrays for artificial cilia actuators. Adv. Intell. Syst. 2020, 3, 2000225. [Google Scholar] [CrossRef]
- den Toonder, J.M.J.; Onck, P.R. Microfluidic manipulation with artificial/bioinspired cilia. Trends Biotechnol. 2013, 31, 85–91. [Google Scholar] [CrossRef]
- Shapiro, O.H.; Fernandez, V.I.; Garren, M.; Guasto, J.S.; Debaillon-Vesque, F.P.; Kramarsky-Winter, E.; Vardi, A.; Stocker, R. Vortical ciliary flows actively enhance mass transport in reef corals. Proc. Natl. Acad. Sci. USA 2014, 111, 13391–13396. [Google Scholar] [CrossRef] [Green Version]
- Ben, S.; Yao, J.J.; Ning, Y.Z.; Zhao, Z.H.; Zha, J.L.; Tian, D.L.; Liu, K.S.; Jiang, L. A bioinspired magnetic responsive cilia array surface for microspheres underwater directional transport. Sci. China-Chem. 2020, 63, 347–353. [Google Scholar] [CrossRef]
- Lim, D.; Lahooti, M.; Kim, D. Inertia-driven flow symmetry breaking by oscillating plates. AIP Adv. 2019, 9, 105119. [Google Scholar] [CrossRef]
- Chateau, S.; Favier, J.; Poncet, S.; D’Ortona, U. Why antiplectic metachronal cilia waves are optimal to transport bronchial mucus. Phys. Rev. E 2019, 100, 042405. [Google Scholar] [CrossRef]
- Gilpin, W.; Bull, M.S.; Prakash, M. The multiscale physics of cilia and flagella. Nat. Rev. Phys. 2020, 2, 74–88. [Google Scholar] [CrossRef]
- Gemmell, B.J.; Colin, S.P.; Costello, J.H.; Sutherland, K.R. A ctenophore (comb jelly) employs vortex rebound dynamics and outperforms other gelatinous swimmers. R. Soc. Open Sci. 2019, 6, 181615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnellos, A.; Keijzer, F. Bodily complexity: Integrated multicellular organizations for contraction-based motility. Front. Physiol. 2019, 10, 1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillinger, C.; Nama, N.; Ahmed, D. Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish. Nat. Commun. 2021, 12, 6455. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Li, S.; Wei, D.; Fang, Z.; Han, Z.; Liu, Y. Bioinspired Superhydrophobic Cilia for droplets transportation and microchemical reaction. Adv. Mater. Interfaces 2021, 8, 2101408. [Google Scholar] [CrossRef]
- Zhang, T.Z.; Wang, Y.F.; Dai, B.; Xu, T.L. Bioinspired transport surface driven by air flow. Adv. Mater. Interfaces 2020, 7, 2001331. [Google Scholar] [CrossRef]
- Furusawa, M.; Maeda, K.; Azukizawa, S.; Shinoda, H.; Tsumori, F. Bio-mimic motion of elastic material dispersed with hard-magnetic particles. J. Photopolym. Sci. Technol. 2019, 32, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.R.; Evans, B.A.; Chang, C.H. Magnetically actuated dynamic iridescence inspired by the neon tetra. Acs Nano 2019, 13, 4657–4666. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, R.; Fujimoto, A.; Yasuda, N.; Morimoto, M.; Nagasaka, T.; Sotome, H.; Ito, S.; Miyasaka, H.; Yokojima, S.; Nakamura, S.; et al. Object transportation system mimicking the cilia of Paramecium aurelia making use of the light-controllable crystal bending behavior of a photochromic diarylethene. Angewandte Chemie-Int. Ed. 2019, 58, 13308–13312. [Google Scholar] [CrossRef] [PubMed]
- Whiting, J.G.H.; Mayne, R.; Melhuish, C.; Adamatzky, A. A Cilia-inspired closed-loop sensor-actuator array. J. Bionic Eng. 2018, 15, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; den Toonder, J.; Onck, P.R. Transport and mixing by metachronal waves in nonreciprocal soft robotic pneumatic artificial cilia at low Reynolds numbers. Phys. Fluids 2021, 33, 092009. [Google Scholar] [CrossRef]
- Demirors, A.F.; Aykut, S.; Ganzeboom, S.; Meier, Y.A.; Hardeman, R.; Graaf, J.; Mathijssen, A.; Poloni, E.; Carpenter, J.A.; Unlu, C.; et al. Amphibious transport of fluids and solids by soft magnetic carpets. Adv. Sci. 2021, 8, 2102510. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Zhang, R.J.; Wang, Y.; Onck, P.R.; den Toonder, J.M.J. Controlled multidirectional particle transportation by magnetic artificial cilia. ACS Nano 2020, 14, 10313–10323. [Google Scholar] [CrossRef]
- Song, Y.G.; Jiang, S.J.; Li, G.Q.; Zhang, Y.C.; Wu, H.; Xue, C.; You, H.S.; Zhang, D.H.; Cai, Y.; Zhu, J.G.; et al. Cross-species bioinspired anisotropic surfaces for active droplet transportation driven by unidirectional microcolumn waves. ACS Appl. Mater. Interfaces 2020, 12, 42264–42273. [Google Scholar] [CrossRef]
- Wang, Y.F.; Chen, X.D.; Sun, K.; Li, K.; Zhang, F.L.; Dai, B.; Shen, J.; Hu, G.Q.; Wang, S.T. Directional transport of centimeter-scale object on anisotropic microcilia surface under water. Sci. China-Mater. 2019, 62, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Kamat, A.M.; Pei, Y.; Kottapalli, A.G. Bioinspired cilia sensors with graphene sensing elements fabricated using 3D printing and casting. Nanomaterials 2019, 9, 954. [Google Scholar] [CrossRef] [Green Version]
- Kamat, A.M.; Pei, Y.; Jayawardhana, B.; Kottapalli, A.G.P. Biomimetic soft polymer microstructures and piezoresistive graphene mems sensors using sacrificial metal 3D printing. ACS Appl. Mater. Interfaces 2021, 13, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
- Dehdashti, E.; Reich, G.W.; Masoud, H. Collective sensitivity of artificial hair sensors to flow direction. AIAA J. 2021, 59, 1135–1141. [Google Scholar] [CrossRef]
- Carvalho, M.; Ribeiro, P.; Romão, V.; Cardoso, S. Smart fingertip sensor for food quality control: Fruit maturity assessment with a magnetic device. J. Magn. Magn. Mater. 2021, 168116. [Google Scholar] [CrossRef]
- Sengupta, D.; Trap, D.; Kottapalli, A.G.P. Piezoresistive carbon nanofiber-based cilia-inspired flow sensor. Nanomaterials 2020, 10, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamat, A.M.; Zheng, X.; Jayawardhana, B.; Kottapalli, A.G.P. Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica moulding. Nanotechnology 2020, 32, 095501. [Google Scholar] [CrossRef]
- Zhou, Q.; Ji, B.; Wei, Y.Z.; Hu, B.; Gao, Y.B.; Xu, Q.S.; Zhou, J.; Zhou, B.P. A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range. J. Mater. Chem. A 2019, 7, 27334–27346. [Google Scholar] [CrossRef]
- Alfadhel, A.; Li, B.; Zaher, A.; Yassine, O.; Kosel, J. A magnetic nanocomposite for biomimetic flow sensing. Lab Chip 2014, 14, 4362–4369. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Hsu, C.-C.; Mani, K.; Panigrahi, B. Hydrodynamic influences of artificial cilia beating behaviors on micromixing. Chem. Eng. Process Process Intensif. 2016, 99, 33–40. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chen, C.-Y.; Lin, C.-Y.; Hu, Y.-T. Magnetically actuated artificial cilia for optimum mixing performance in microfluidics. Lab Chip 2013, 13, 2834–2839. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Cheng, L.Y.; Hsu, C.C.; Mani, K. Microscale flow propulsion through bioinspired and magnetically actuated artificial cilia. Biomicrofluidics 2015, 9, 034105. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.-Y.; Panigrahi, B.; Lu, C.-H.; Huang, P.-F.; Chen, C.-Y. An artificial cilia-based micromixer towards the activation of zebrafish sperms. Sens. Actuators. B Chem. 2017, 244, 541–548. [Google Scholar] [CrossRef]
- Lu, C.-H.; Tang, C.-H.; Ghayal, N.; Panigrahi, B.; Chen, C.-Y.; Chen, C.-Y. On the improvement of visible-responsive photodegradation through artificial cilia. Sens. Actuators. A Phys. 2019, 285, 234–240. [Google Scholar] [CrossRef]
- Wu, Y.-A.; Panigrahi, B.; Chen, C.-Y. Hydrodynamically efficient micropropulsion through a new artificial cilia beating concept. Microsyst. Technol. 2017, 23, 5893–5902. [Google Scholar] [CrossRef]
- Panigrahi, B.; Vignesh, S.; Chen, C.-Y. Shape-programmable artificial cilia for microfluidics. iScience 2021, 24, 103367. [Google Scholar] [CrossRef]
- Wu, Y.A.; Panigrahi, B.; Lu, Y.H.; Chen, C.Y. An integrated artificial cilia based microfluidic device for micropumping and micromixing applications. Micromachines 2017, 8, 260. [Google Scholar] [CrossRef] [Green Version]
- Ul Islam, T.; Bellouard, Y.; den Toonder, J.M.J. Highly motile nanoscale magnetic artificial cilia. Proc. Natl. Acad. Sci. USA 2021, 118. [Google Scholar] [CrossRef]
- Hanasoge, S.; Ballard, M.; Hesketh, P.J.; Alexeev, A. Asymmetric motion of magnetically actuated artificial cilia. Lab Chip 2017, 17, 3138–3145. [Google Scholar] [CrossRef] [Green Version]
- Vilfan, M.; Potočnik, A.; Kavčič, B.; Osterman, N.; Poberaj, I.; Vilfan, A.; Babič, D. Self-assembled artificial cilia. Proc. Natl. Acad. Sci. USA 2010, 107, 1844–1847. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gao, Y.; Wyss, H.; Anderson, P.; den Toonder, J. Out of the cleanroom, self-assembled magnetic artificial cilia. Lab Chip 2013, 13, 3360–3366. [Google Scholar] [CrossRef] [Green Version]
- Bryan, M.T.; Martin, E.L.; Pac, A.; Gilbert, A.D.; Ogrin, F.Y. Metachronal waves in magnetic micro-robotic paddles for artificial cilia. Commun. Mater. 2021, 2, 14. [Google Scholar] [CrossRef]
- Zhang, S.; Cui, Z.; Wang, Y.; den Toonder, J. Metachronal μ-cilia for on-chip integrated pumps and climbing robots. ACS Appl. Mater. Interfaces 2021, 13, 20845–20857. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, M.; Spinks, G.M.; Jager, E.W. Fully 3D printed soft microactuators for soft microrobotics. Smart Mater. Struct. 2020, 29, 085032. [Google Scholar] [CrossRef]
- Liu, F.; Alici, G.; Zhang, B.; Beirne, S.; Li, W. Fabrication and characterization of a magnetic micro-actuator based on deformable Fe-doped PDMS artificial cilium using 3D printing. Smart Mater. Struct. 2015, 24, 035015. [Google Scholar] [CrossRef]
- Gu, H.; Boehler, Q.; Cui, H.; Secchi, E.; Savorana, G.; De Marco, C.; Gervasoni, S.; Peyron, Q.; Huang, T.-Y.; Pane, S. Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 2020, 11, 2637. [Google Scholar] [CrossRef] [PubMed]
- Tibbits, S. 4D printing: Multi-material shape change. Archit. Des. 2014, 84, 116–121. [Google Scholar] [CrossRef]
- Azukizawa, S.; Shinoda, H.; Tsumori, F. 4D-printing system for elastic magnetic actuators. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Korea, 27–31 January 2019; pp. 248–251. [Google Scholar]
- Azukizawa, S.; Shinoda, H.; Tokumaru, K.; Tsumori, F. 3D printing system of magnetic anisotropy for artificial cilia. J. Photopolym. Sci. Technol. 2018, 31, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Timonen, J.V.; Johans, C.; Kontturi, K.s.; Walther, A.; Ikkala, O.; Ras, R.H. A facile template-free approach to magnetodriven, multifunctional artificial cilia. ACS Appl. Mater. Interfaces 2010, 2, 2226–2230. [Google Scholar] [CrossRef]
- Sanchez, T.; Welch, D.; Nicastro, D.; Dogic, Z. Cilia-like beating of active microtubule bundles. Science 2011, 333, 456–459. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; den Toonder, J.; Cardinaels, R.; Anderson, P. A continuous roll-pulling approach for the fabrication of magnetic artificial cilia with microfluidic pumping capability. Lab Chip 2016, 16, 2277–2286. [Google Scholar] [CrossRef]
- Jeong, W.; Jeong, S.M.; Lim, T.; Hang, C.Y.; Yang, H.; Lee, B.W.; Park, S.Y.; Ju, S. Self-emitting artificial cilia produced by field effect spinning. ACS Appl. Mater. Interfaces 2019, 11, 35286–35293. [Google Scholar] [CrossRef]
- Becker, K.P.; Chen, Y.F.; Wood, R.J. Mechanically programmable dip molding of high aspect ratio soft actuator arrays. Adv. Funct. Mater. 2020, 30, 1908919. [Google Scholar] [CrossRef]
- Belardi, J.; Schorr, N.; Prucker, O.; Rühe, J. Artificial cilia: Generation of magnetic actuators in microfluidic systems. Adv. Funct. Mater. 2011, 21, 3314–3320. [Google Scholar] [CrossRef]
- Gaudet, M.; Arscott, S. Optical actuation of microelectromechanical systems using photoelectrowetting. Appl. Phys. Lett. 2012, 100, 224103. [Google Scholar] [CrossRef] [Green Version]
- Van Oosten, C.L.; Bastiaansen, C.W.; Broer, D.J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 2009, 8, 677–682. [Google Scholar] [CrossRef]
- Gelebart, A.H.; Mc Bride, M.; Schenning, A.; Bowman, C.N.; Broer, D.J. Photoresponsive fiber array: Toward mimicking the collective motion of cilia for transport applications. Adv. Funct. Mater. 2016, 26, 5322–5327. [Google Scholar] [CrossRef]
- den Toonder, J.; Bos, F.; Broer, D.; Filippini, L.; Gillies, M.; de Goede, J.; Mol, T.; Reijme, M.; Talen, W.; Wilderbeek, H. Artificial cilia for active micro-fluidic mixing. Lab Chip 2008, 8, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Danis, U.; Rasooli, R.; Chen, C.-Y.; Dur, O.; Sitti, M.; Pekkan, K. Thrust and hydrodynamic efficiency of the bundled flagella. Micromachines 2019, 10, 449. [Google Scholar] [CrossRef] [Green Version]
- Minami, K.; Yano, S. Electrostatic micro actuator with distributed ciliary electrodes (E-Maccel). IEEJ Trans. Sens. Micromach. 2004, 124, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Glazer, P.; Leuven, J.; An, H.; Lemay, S.; Mendes, E. Hydrogel-based multi-stimuli responsive cilia. In Proceedings of the 2013 NSTI Nanotechnology Conference and Expo, Nanotech 2013, Washington, DC, USA, 12–16 May 2013; pp. 138–141. [Google Scholar]
- Ionov, L. Hydrogel-based actuators: Possibilities and limitations. Mater. Today 2014, 17, 494–503. [Google Scholar] [CrossRef]
- Zarzar, L.D.; Kim, P.; Aizenberg, J. Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pH. Adv. Mater. 2011, 23, 1442–1446. [Google Scholar] [CrossRef]
- Pokroy, B.; Epstein, A.K.; Persson-Gulda, M.C.; Aizenberg, J. Fabrication of bioinspired actuated nanostructures with arbitrary geometry and stiffness. Adv. Mater. 2009, 21, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Oh, K.; Chung, J.-H.; Devasia, S.; Riley, J.J. Bio-mimetic silicone cilia for microfluidic manipulation. Lab Chip 2009, 9, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Smith, B.; Devasia, S.; Riley, J.J.; Chung, J.H. Characterization of mixing performance for bio-mimetic silicone cilia. Microfluid. Nanofluid. 2010, 9, 645–655. [Google Scholar] [CrossRef]
- Baltussen, M.; Anderson, P.; Bos, F.; den Toonder, J. Inertial flow effects in a micro-mixer based on artificial cilia. Lab Chip 2009, 9, 2326–2331. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, M.L.; Kuo, P.-l.; Parker, K.K. Optimization of electroactive hydrogel actuators. ACS Appl. Mater. Interfaces 2010, 2, 343–346. [Google Scholar] [CrossRef]
- Tsumori, F.; Saijou, A.; Osada, T.; Miura, H. Development of actuation system for artificial cilia with magnetic elastomer. Jpn. J. Appl. Phys. 2015, 54, 06FP12. [Google Scholar] [CrossRef]
- Tsumori, F.; Marume, R.; Saijou, A.; Kudo, K.; Osada, T.; Miura, H. Metachronal wave of artificial cilia array actuated by applied magnetic field. Jpn. J. Appl. Phys. 2016, 55, 06GP19. [Google Scholar] [CrossRef]
- Shinoda, H.; Tsumori, F. Development of micro pump using magnetic artificial cilia with metachronal wave. In Proceedings of the 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), Vancouver, BC, Canada, 18–22 January 2020; pp. 497–500. [Google Scholar]
- Chen, C.-Y.; Lin, C.-Y.; Hu, Y.-T.; Cheng, L.-Y.; Hsu, C.-C. Efficient micromixing through artificial cilia actuation with fish-schooling configuration. Chem. Eng. J. 2015, 259, 391–396. [Google Scholar] [CrossRef]
- Li, T.-C.; Panigraphi, B.; Chen, W.-T.; Chen, C.-Y.; Chen, C.-Y. Hydrodynamic benefits of artificial cilia distribution towards photodegradation processes. Sens. Actuators. A Phys. 2020, 313, 112184. [Google Scholar] [CrossRef]
- Panigrahi, B.; Lu, C.H.; Ghayal, N.; Chen, C.Y. Sperm activation through orbital and self-axis revolutions using an artificial cilia embedded serpentine microfluidic platform. Sci. Rep. 2018, 8, 4605. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Chang Chien, T.-C.; Mani, K.; Tsai, H.-Y. Axial orientation control of zebrafish larvae using artificial cilia. Microfluid. Nanofluid. 2016, 20, 12. [Google Scholar] [CrossRef]
- Hanasoge, S.; Hesketh, P.J.; Alexeev, A. Metachronal motion of artificial magnetic cilia. Soft Matter 2018, 14, 3689–3693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanasoge, S.; Hesketh, P.J.; Alexeev, A. Microfluidic pumping using artificial magnetic cilia. Microsyst. Nanoeng. 2018, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Lin, C.-Y.; Hu, Y.-T. Inducing 3D vortical flow patterns with 2D asymmetric actuation of artificial cilia for high-performance active micromixing. Exp. Fluids 2014, 55, 1765. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Wang, Y.; Lavrijsen, R.; Onck, P.R.; den Toonder, J.M.J. Versatile microfluidic flow generated by moulded magnetic artificial cilia. Sens. Actuators. B-Chem. 2018, 263, 614–624. [Google Scholar] [CrossRef] [Green Version]
- Evans, B.; Shields, A.; Carroll, R.L.; Washburn, S.; Falvo, M.; Superfine, R. Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett. 2007, 7, 1428–1434. [Google Scholar] [CrossRef]
- Orbay, S.; Ozcelik, A.; Bachman, H.; Huang, T.J. Acoustic actuation of in situ fabricated artificial cilia. J. Micromech. Microeng. 2018, 28, 025012. [Google Scholar] [CrossRef]
- Dai, B.; Li, S.H.; Xu, T.L.; Wang, Y.F.; Zhang, F.L.; Gu, Z.; Wang, S.T. Artificial asymmetric cilia array of dielectric elastomer for cargo transportation. ACS Appl. Mater. Interfaces 2018, 10, 42979–42984. [Google Scholar] [CrossRef]
- Sugioka, H.; Ishikawa, M. Artificial carbon cilium using induced charge electro-osmosis. AIP Adv. 2020, 10, 055302. [Google Scholar] [CrossRef]
- Sugioka, H.; Ishikawa, M.; Kado, T. Selective carbon self-wiring from a graphite rod in water under a DC electric field. J. Phys. Soc. Jpn. 2020, 89. [Google Scholar] [CrossRef]
- Sugioka, H.; Nakano, N.; Mizuno, Y. High-speed periodic beating motion of a spiral gold thread using induced charge electro-osmosis with a two-electrode structure. J. Phys. Soc. Jpn. 2019, 88, 084801. [Google Scholar] [CrossRef]
- Sugioka, H.; Yoshijima, H. Metachronal motion of artificial cilia using induced charge electro-osmosis. Coll. Surf. Physicochem. Eng. Aspects 2021, 626, 127023. [Google Scholar] [CrossRef]
- Sugioka, H.; Mizuno, Y.; Nambo, Y. Experimental demonstration of catching and releasing functions of artificial cilia using induced charge electro-osmosis. J. Phys. Soc. Jpn. 2020, 89, 054401. [Google Scholar] [CrossRef]
- Milana, E.; Zhang, R.; Vetrano, M.R.; Peerlinck, S.; De Volder, M.; Onck, P.R.; Reynaerts, D.; Gorissen, B. Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion. Sci. Adv. 2020, 6, eabd2508. [Google Scholar] [CrossRef] [PubMed]
- Milana, E.; Gorissen, B.; Peerlinck, S.; De Volder, M.; Reynaerts, D. Artificial soft cilia with asymmetric beating patterns for biomimetic low-Reynolds-number fluid propulsion. Adv. Funct. Mater. 2019, 29, 1900462. [Google Scholar] [CrossRef]
- Gorissen, B.; De Volder, M.; Reynaerts, D. Pneumatically-actuated artificial cilia array for biomimetic fluid propulsion. Lab Chip 2015, 15, 4348–4355. [Google Scholar] [CrossRef] [Green Version]
- Gorissen, B.; Vincentie, W.; Al-Bender, F.; Reynaerts, D.; De Volder, M. Modeling and bonding-free fabrication of flexible fluidic microactuators with a bending motion. J. Micromech. Microeng. 2013, 23, 045012. [Google Scholar] [CrossRef]
- Sugioka, H.; Kubota, M. Strong self-propelled swing motion due to the growing instability on heat transfer. J. Phys. Soc. Jpn. 2020, 89, 064402. [Google Scholar] [CrossRef]
- Sugioka, H.; Kubota, M.; Tanaka, M. High-speed asymmetric motion of thermally actuated cilium. J. Phys. Soc. Jpn. 2020, 89, 114402. [Google Scholar] [CrossRef]
- Sugioka, H.; Tomita, W.; Tanaka, M. Metachronal motion of a thermally actuated double pendulum driven by self-propulsion caused by spontaneous asymmetrical heat transfer. J. Appl. Phys. 2021, 129, 244701. [Google Scholar] [CrossRef]
- Yao, Y.X.; Waters, J.T.; Shneidman, A.V.; Cui, J.X.; Wang, X.G.; Mandsberg, N.K.; Li, S.C.; Balazs, A.C.; Aizenberg, J. Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability. Proc. Natl. Acad. Sci. USA 2018, 115, 12950–12955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raak, R.J.H.; Houben, S.J.A.; Schenning, A.; Broer, D.J. Patterned and collective motion of densely packed tapered multiresponsive liquid crystal cilia. Adv. Mater. Technol. 2022, 7, 2101619. [Google Scholar] [CrossRef]
- Glazer, P.J.; Leuven, J.; An, H.; Lemay, S.G.; Mendes, E. Multi-stimuli responsive hydrogel cilia. Adv. Funct. Mater. 2013, 23, 2964–2970. [Google Scholar] [CrossRef]
- Li, M.; Kim, T.; Guidetti, G.; Wang, Y.; Omenetto, F.G. Optomechanically actuated microcilia for locally reconfigurable surfaces. Adv. Mater. 2020, 32, 2004147. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.A.C.; Evans, B.A.; Tracy, J.B. Photothermally reconfigurable shape memory magnetic cilia. Adv. Mater. Technol. 2020, 5, 2000147. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Wyss, H.M.; Anderson, P.D.; den Toonder, J.M. Artificial cilia fabricated using magnetic fiber drawing generate substantial fluid flow. Microfluid. Nanofluid. 2015, 18, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Ye, Y.; Shen, R.; Zhu, P.; Guo, R.; Hu, Y.; Wu, L. Mixing enhancement by simple periodic geometric features in microchannels. Chem. Eng. J. 2012, 187, 306–310. [Google Scholar] [CrossRef]
- Darnton, N.; Turner, L.; Breuer, K.; Berg, H.C. Moving fluid with bacterial carpets. Biophys. J. 2004, 86, 1863–1870. [Google Scholar] [CrossRef] [Green Version]
- Gauger, E.M.; Downton, M.T.; Stark, H. Fluid transport at low Reynolds number with magnetically actuated artificial cilia. Eur. Phys. J. E 2009, 28, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Faus-Pérez, A.; Sanchis-Calvo, A.; Codoñer-Franch, P. Ciliopathies: An update. Pediatrics Res. Int. J. 2015, 2015, c1–c23. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Villa, N.S.; Zhuang, Y.F.; Chen, L.Z.; Wang, T.F.; Li, Z.D.; Kong, T.T. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics. Adv. Energy Mater. 2020, 10, 1902769. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Cui, Z.W.; Wang, Y.; den Toonder, J.M.J. Metachronal actuation of microscopic magnetic artificial cilia generates strong microfluidic pumping. Lab Chip 2020, 20, 3569–3581. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.G.; Lum, G.Z.; Hu, W.Q.; Zhang, R.J.; Ren, Z.Y.; Onck, P.R.; Sitti, M. Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination. Sci. Adv. 2020, 6, eabc9323. [Google Scholar] [CrossRef]
- Saleem, N.; Munawar, S.; Tripathi, D. Thermal analysis of double diffusive electrokinetic thermally radiated TiO2-Ag/blood stream triggered by synthetic cilia under buoyancy forces and activation energy. Phys. Scr. 2021, 96, 095218. [Google Scholar] [CrossRef]
- Shaheen, S.; Beg, O.A.; Gul, F.; Maqbool, K. Electro-osmotic propulsion of jeffrey fluid in a ciliated channel under the effect of nonlinear radiation and heat source/sink. J. Biomech. Eng.-Trans. ASME 2021, 143, 051008. [Google Scholar] [CrossRef] [PubMed]
- Saleem, N.; Munawar, S.; Mehmood, A.; Daqqa, I. Entropy production in electroosmotic cilia facilitated stream of thermally radiated nanofluid with ohmic heating. Micromachines 2021, 12, 1004. [Google Scholar] [CrossRef] [PubMed]
- Saleem, N.; Munawar, S. Significance of synthetic cilia and Arrhenius energy on double diffusive stream of radiated hybrid nanofluid in microfluidic pump under ohmic heating: An entropic analysis. Coatings 2021, 11, 1292. [Google Scholar] [CrossRef]
- Sreejith, M.; Chetan, S.; Khaderi, S.N. Numerical analysis of heat transfer enhancement in a micro-channel due to mechanical stirrers. J. Therm. Sci. Eng. Appl. 2021, 13, 011013. [Google Scholar] [CrossRef]
- Rahbar, M.; Shannon, L.; Gray, B.L. Microfluidic active mixers employing ultra-high aspect-ratio rare-earth magnetic nano-composite polymer artificial cilia. J. Micromech. Microeng. 2014, 24. [Google Scholar] [CrossRef]
- Sun, M.L.; Wang, Q.; Dai, B.Y.; Sun, W.H.; Ni, Y.R.; Lu, C.H.; Kou, J.H. Construction of a facile recyclable graphene-like C3N4 cilia array for effective visible-light-responsive photocatalytic hydrogen production. Energy Fuels 2020, 34, 10290–10298. [Google Scholar] [CrossRef]
- Miao, J.; Zhang, T.; Li, G.; Shang, W.; Shen, Y. Magnetic artificial cilia carpets for transport, mixing, and directional diffusion. Adv. Eng. Mater. 2021, 24, 2101399. [Google Scholar] [CrossRef]
- Chen, G.; Dai, Z.; Li, S.; Huang, Y.; Xu, Y.; She, J.; Zhou, B. Magnetically responsive film decorated with microcilia for robust and controllable manipulation of droplets. ACS Appl. Mater. Interfaces 2021, 13, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Verburg, T.; Schaap, A.; Zhang, S.Z.; den Toonder, J.; Wang, Y. Enhancement of microalgae growth using magnetic artificial cilia. Biotechnol. Bioeng. 2021, 118, 2472–2481. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Yao, C.Y.; Lin, C.Y.; Hung, S.H. Real-time remote control of artificial cilia actuation using fingertip drawing for efficient micromixing. J. Lab. Autom. 2014, 19, 492–497. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Pekkan, K. High-speed three-dimensional characterization of fluid flows induced by micro-objects in deep microchannels. BioChip J. 2013, 7, 95–103. [Google Scholar] [CrossRef]
- Khatavkar, V.V.; Anderson, P.D.; den Toonder, J.M.J.; Meijer, H.E.H. Active micromixer based on artificial cilia. Phys. Fluids 2007, 19, 083605. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.P.; Xu, W.; Syed, A.A.; Chau, Y.Y.; Chen, L.Q.; Chew, B.; Yassine, O.; Wu, X.X.; Gao, Y.B.; Zhang, J.X.; et al. Design and fabrication of magnetically functionalized flexible micropillar arrays for rapid and controllable microfluidic mixing. Lab Chip 2015, 15, 2125–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfadhel, A.; Kosel, J. Magnetic nanocomposite cilia tactile sensor. Adv. Mater. 2015, 27, 7888–7892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfadhel, A.; Khan, M.A.; de Freitas, S.C.; Kosel, J. Magnetic tactile sensor for braille reading. IEEE Sens. J. 2016, 16, 8700–8705. [Google Scholar] [CrossRef] [Green Version]
- Asadnia, M.; Kottapalli, A.G.P.; Karavitaki, K.D.; Warkiani, M.E.; Miao, J.; Corey, D.P.; Triantafyllou, M. From biological cilia to artificial flow sensors: Biomimetic soft polymer nanosensors with high sensing performance. Sci. Rep. 2016, 6, 32955. [Google Scholar] [CrossRef] [PubMed]
- Slinker, K.A.; Kondash, C.; Dickinson, B.T.; Baur, J.W. CNT-based artificial hair sensors for predictable boundary layer air flow sensing. Adv. Mater. Technologies 2016, 1, 1600176. [Google Scholar] [CrossRef]
- Ribeiro, P.; Khan, M.A.; Alfadhel, A.; Kosel, J.; Franco, F.; Cardoso, S.; Bernardino, A.; Schmitz, A.; Santos-Victor, J.; Jamone, L. Bioinspired ciliary force sensor for robotic platforms. IEEE Robotics Automat. Lett. 2017, 2, 971–976. [Google Scholar] [CrossRef]
- Kim, H.N.; Jang, K.-J.; Shin, J.-Y.; Kang, D.; Kim, S.M.; Koh, I.; Hong, Y.; Jang, S.; Kim, M.S.; Kim, B.-S. Artificial slanted nanocilia array as a mechanotransducer for controlling cell polarity. ACS Nano 2017, 11, 730–741. [Google Scholar] [CrossRef]
- Kim, K.J.; Palmre, V.; Stalbaum, T.; Hwang, T.; Shen, Q.; Trabia, S. Promising developments in marine applications with artificial muscles: Electrodeless artificial cilia microfibers. Mar. Technol. Soc. J. 2016, 50, 24–34. [Google Scholar] [CrossRef]
- Sarlo, R.; Leo, D. Airflow sensing with arrays of hydrogel supported artificial hair cells. In Proceedings of the ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Colorado Springs, CO, USA, 21–23 September 2015; p. V002T06A008. [Google Scholar]
- Alfadhel, A.; Khan, M.A.; Cardoso, S.; Kosel, J. A single magnetic nanocomposite cilia force sensor. In Proceedings of the Sensors Applications Symposium (SAS), 2016 IEEE, Catania, Italy, 20–22 April 2016; pp. 1–4. [Google Scholar]
- Schroeder, P.; Schotter, J.; Shoshi, A.; Eggeling, M.; Bethge, O.; Hutten, A.; Bruckl, H. Artificial cilia of magnetically tagged polymer nanowires for biomimetic mechanosensing. Bioinspiration Biomim. 2011, 6, 046007. [Google Scholar] [CrossRef] [PubMed]
- Alfadhel, A.; Khan, M.A.; Cardoso, S.; Leitao, D.; Kosel, J. A Magnetoresistive tactile sensor for harsh environment applications. Sensors 2016, 16, 650. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Shen, N.; Xu, Q.; Pei, Y.; Lian, Y.; Wang, W.; Zhang, G.; Zhang, W. Design and implementation of anulus-shaped ciliary structure for four-unit MEMS vector hydrophone. Int. J. Metrol. Qual. Eng. 2021, 12, 4. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xu, Q.D.; Zhang, G.J.; Shen, N.X.; Shang, Z.Z.; Pei, Y.; Ding, J.W.; Zhang, L.S.; Wang, R.X.; Zhang, W.D. Design and analysis of a multiple sensor units vector hydrophone. AIP Adv. 2018, 8, 085124. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.F.; Chen, J.; Zou, J.; Bullen, D.; Liu, C.; Delcomyn, F. Design and fabrication of artificial lateral line flow sensors. J. Micromech. Microeng. 2002, 12, 655–661. [Google Scholar] [CrossRef] [Green Version]
- Qualtieri, A.; Rizzi, F.; Epifani, G.; Ernits, A.; Kruusmaa, M.; De Vittorio, M. Parylene-coated bioinspired artificial hair cell for liquid flow sensing. Microelectron. Eng. 2012, 98, 516–519. [Google Scholar] [CrossRef]
- Alfadhel, A.; Kosel, J. Magnetic micropillar sensors for force sensing. In Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015; pp. 1–4. [Google Scholar]
- Liu, Y.F.; Fu, Y.F.; Li, Y.Q.; Huang, P.; Xu, C.H.; Hu, N.; Fu, S.Y. Bio-inspired highly flexible dual-mode electronic cilia. J. Mater. Chem. B 2018, 6, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.N.; Tucker, C.; Engel, J.M.; Yang, Y.C.; Pandya, S.; Liu, C. Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity. J. Microelectromech. Syst. 2007, 16, 999–1014. [Google Scholar] [CrossRef]
- Hwang, Y.; Yoo, S.; Lim, N.; Kang, S.M.; Yoo, H.; Kim, J.; Hyun, Y.; Jung, G.Y.; Ko, H.C. Enhancement of interfacial adhesion using micro/nanoscale hierarchical cilia for randomly accessible membrane-type electronic devices. ACS Nano 2020, 14, 118–128. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wu, Y.F.; Feng, Z.P.; Sun, C.C.; Fan, W.J.; Zhou, Z.H.; Meng, K.Y.; Fan, E.D.; Yang, J. Triboelectric vibration sensor for a human-machine interface built on ubiquitous surfaces. Nano Energy 2019, 59, 689–696. [Google Scholar] [CrossRef]
- Mani, K.; Chang Chien, T.C.; Panigrahi, B.; Chen, C.-Y. Manipulation of zebrafish’s orientation using artificial cilia in a microchannel with actively adaptive wall design. Sci. Rep. 2016, 6, 36385. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.-H.; Mani, K.; Panigrahi, B.; Hajari, S.; Chen, C.-Y. A shape memory alloy-based miniaturized actuator for catheter interventions. Cardiovasc. Eng. Technol. 2018, 9, 405–413. [Google Scholar] [CrossRef]
- Lei, Y.; Sheng, Z.; Zhang, J.; Liu, J.; Lv, W.; Hou, X. Building magnetoresponsive composite elastomers for bionic locomotion applications. J. Bionic Eng. 2020, 17, 405–420. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, M.; Yang, Y.; Huang, Q.; Fukuda, T.; Wang, Z.; Shen, Y. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat. Commun. 2018, 9, 3944. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Liu, W.T.; Stefanini, C.; Fu, X.; Dario, P. A novel bioinspired PVDF micro/nano hair receptor for a robot sensing system. Sensors 2010, 10, 994–1011. [Google Scholar] [CrossRef]
- Dayal, P.; Kuksenok, O.; Balazs, A.C. Directing the behavior of active, self-oscillating gels with light. Macromolecules 2014, 47, 3231–3242. [Google Scholar] [CrossRef]
- Zhang, X.X.; Wang, F.Y.; Yu, Y.R.; Chen, G.P.; Shang, L.R.; Sun, L.Y.; Zhao, Y.J. Bio-inspired clamping microneedle arrays from flexible ferrofluid-configured moldings. Sci. Bull. 2019, 64, 1110–1117. [Google Scholar] [CrossRef] [Green Version]
- Ben, S.; Zhou, T.; Ma, H.; Yao, J.; Ning, Y.; Tian, D.; Liu, K.; Jiang, L. Multifunctional magnetocontrollable superwettable-microcilia surface for directional droplet manipulation. Adv. Sci. 2019, 6, 1900834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, M.; Jin, X.; Peng, Y.; Yu, C.; Li, K.; Liu, K.; Jiang, L. Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcilia. Adv. Mater. 2017, 29, 1606869. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J.; Zhang, Z.H.; Wang, Z.K.; Liang, Y.H.; Cui, Z.Q.; Zhao, J.; Li, X.J.; Ren, L.Q. Multistimuli-responsive microstructured superamphiphobic surfaces with large-range, reversible switchable wettability for oil. ACS Appl. Mater. Interfaces 2019, 11, 28478–28486. [Google Scholar] [CrossRef]
- Yang, C.; Wu, L.; Li, G. Magnetically responsive superhydrophobic surface: In situ reversible switching of water droplet wettability and adhesion for droplet manipulation. ACS Appl. Mater. Interfaces 2018, 10, 20150–20158. [Google Scholar] [CrossRef]
- Al-Azawi, A.; Cenev, Z.; Tupasela, T.; Peng, B.; Ikkala, O.; Zhou, Q.; Jokinen, V.; Franssila, S.; Ras, R.H.A. Tunable and magnetic thiol-ene micropillar arrays. MacroMol. Rapid Commun. 2020, 41, 1900522. [Google Scholar] [CrossRef]
- Khan, M.A.; Mohammed, H.; Kosel, J. Broadband magnetic composite energy harvester. Adv. Eng. Mater. 2018, 20, 1800492. [Google Scholar] [CrossRef]
- Peng, F.P.; Xu, W.X.; Hu, Y.Y.; Fu, W.J.; Li, H.Z.; Lin, J.Y.; Xiao, Y.F.; Wu, Z.; Wang, W.; Lu, C.H. The design of an inner-motile waste-energy-driven piezoelectric catalytic system. New J. Chem. 2021, 45, 7671–7681. [Google Scholar] [CrossRef]
- Zhang, S.; Zuo, P.; Wang, Y.; Onck, P.; Toonder, J.M.D. Anti-biofouling and self-cleaning surfaces featured with magnetic artificial cilia. ACS Appl. Mater. Interfaces 2020, 12, 27726–27736. [Google Scholar] [CrossRef]
- Cui, Z.W.; Zhang, S.Z.; Wang, Y.; Tormey, L.; Kanies, O.S.; Spero, R.C.; Fisher, J.K.; den Toonder, J.M.J. Self-cleaning surfaces realized by biologically sized magnetic artificial cilia. Adv. Mater. Interfaces. 2021, 7, 2102016. [Google Scholar] [CrossRef]
- Ben, S.; Tai, J.; Ma, H.; Peng, Y.; Zhang, Y.; Tian, D.L.; Liu, K.S.; Jiang, L. Cilia-inspired flexible arrays for intelligent transport of viscoelastic microspheres. Adv. Funct. Mater. 2018, 28, 1706666. [Google Scholar] [CrossRef]
- Ma, S.S.; Lin, L.G.; Wang, Q.; Zhang, Y.H.; Zhang, H.L.; Gao, Y.X.; Xu, L.; Pan, F.S.; Zhang, Y.Z. Bioinspired EVAL membrane modified with cilia-like structures showing simultaneously enhanced permeability and antifouling properties. Coll. Surf. B-Biointerfaces 2019, 181, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.P.; Wang, W.; Peng, F.P.; Kou, J.H.; Ni, Y.R.; Lu, C.H.; Xu, Z.Z. A bio-inspired inner-motile photocatalyst film: A magnetically actuated artificial cilia photocatalyst. Nanoscale 2014, 6, 5516–5525. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.P.; Zhou, Q.; Zhang, D.N.; Lu, C.H.; Ni, Y.R.; Kou, J.H.; Wang, J.; Xu, Z.Z. Bio-inspired design: Inner-motile multifunctional ZnO/CdS heterostructures magnetically actuated artificial cilia film for photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2015, 165, 419–427. [Google Scholar] [CrossRef]
- Peng, F.; Ni, Y.; Zhou, Q.; Kou, J.; Lu, C.; Xu, Z. Construction of ZnO nanosheet arrays within BiVO4 particles on a conductive magnetically driven cilia film with enhanced visible photocatalytic activity. J. Alloy. Compd. 2017, 690, 953–960. [Google Scholar] [CrossRef]
- Wang, W.; Huang, X.; Lai, M.; Lu, C. RGO/TiO2 nanosheets immobilized on magnetically actuated artificial cilia film: A new mode for efficient photocatalytic reaction. RSC Adv. 2017, 7, 10517–10523. [Google Scholar] [CrossRef] [Green Version]
- Peng, F.; Ni, Y.; Zhou, Q.; Lu, C.; Kou, J.; Xu, Z. Design of inner-motile ZnO@ TiO2 mushroom arrays on magnetic cilia film with enhanced photocatalytic performance. J. Photochem. Photobiol. A Chem. 2017, 332, 150–157. [Google Scholar] [CrossRef]
- Peng, F.P.; Zhou, Q.; Lu, C.H.; Ni, Y.R.; Kou, J.H.; Xu, Z.Z. Construction of (001) facets exposed ZnO nanosheets on magnetically driven cilia film for highly active photocatalysis. Appl. Surf. Sci. 2017, 394, 115–124. [Google Scholar] [CrossRef]
- Huang, Y.; Stogin, B.B.; Sun, N.; Wang, J.; Yang, S.K.; Wong, T.S. A switchable cross-species liquid repellent surface. Adv. Mater. 2017, 29, 1604641. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Wang, Y.; Onck, P.R.; den Toonder, J.M.J. Removal of microparticles by ciliated surfaces-an experimental study. Adv. Funct. Mater. 2019, 29, 1806434. [Google Scholar] [CrossRef] [Green Version]
- Pedersoli, L.; Zhang, S.Z.; Briatico-Vangosa, F.; Petrini, P.; Cardinaels, R.; den Toonder, J.; Pacheco, D.P. Engineered modular microphysiological models of the human airway clearance phenomena. Biotechnol. Bioeng. 2021, 118, 3898–3913. [Google Scholar] [CrossRef] [PubMed]
- Al-Azawi, A.; Horenz, C.; Tupasela, T.; Ikkala, O.; Jokinen, V.; Franssila, S.; Ras, R.H.A. Slippery and magnetically responsive micropillared surfaces for manipulation of droplets and beads. Aip Adv. 2020, 10, 085021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahadevan, V.; Panigrahi, B.; Chen, C.-Y. Microfluidic Applications of Artificial Cilia: Recent Progress, Demonstration, and Future Perspectives. Micromachines 2022, 13, 735. https://doi.org/10.3390/mi13050735
Sahadevan V, Panigrahi B, Chen C-Y. Microfluidic Applications of Artificial Cilia: Recent Progress, Demonstration, and Future Perspectives. Micromachines. 2022; 13(5):735. https://doi.org/10.3390/mi13050735
Chicago/Turabian StyleSahadevan, Vignesh, Bivas Panigrahi, and Chia-Yuan Chen. 2022. "Microfluidic Applications of Artificial Cilia: Recent Progress, Demonstration, and Future Perspectives" Micromachines 13, no. 5: 735. https://doi.org/10.3390/mi13050735
APA StyleSahadevan, V., Panigrahi, B., & Chen, C. -Y. (2022). Microfluidic Applications of Artificial Cilia: Recent Progress, Demonstration, and Future Perspectives. Micromachines, 13(5), 735. https://doi.org/10.3390/mi13050735