Design and Comparative Study of a Small-Stroke Energy Harvesting Floor Based on a Multi-Layer Piezoelectric Beam Structure
Abstract
:1. Introduction
2. Design, Analysis, and Fabrication of the Energy Harvester
3. Development of the Stepping Machine
3.1. Design of Stepping Machine
3.2. Control of the Setpping Machnie
3.3. Validation of the Stepping Machine
4. Comparative Studies of the Energy Harvesting Floor
4.1. Output Voltages with Different External Circuits
4.2. Output Power under Different Frequencies and External Loads
4.3. Output Power with Different Initial Beam Shapes
5. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Elahi, H.; Munir, K.; Eugeni, M.; Atek, S.; Gaudenzi, P. Energy harvesting towards self-powered IoT devices. Energies 2020, 13, 5528. [Google Scholar] [CrossRef]
- Yang, L.X.; Ma, Z.H.; Tian, Y.; Meng, B.; Peng, Z.C. Progress on self-powered wearable and implantable systems driven by nanogenerators. Micromachines 2021, 12, 666. [Google Scholar] [CrossRef]
- Zeadally, S.; Shaikh, F.K.; Talpur, A.; Sheng, Q.Z. Design architectures for energy harvesting in the Internet of Things. Renew. Sust. Energy Rev. 2020, 128, 109901. [Google Scholar] [CrossRef]
- Rokonuzzaman, M.; Mishu, M.K.; Amin, N.; Nadarajah, M.; Roy, R.B.; Rahman, K.S.; Buhari, A.M.; Binzaid, S.; Shakeri, M.; Pasupuleti, J. Self-Sustained autonomous wireless sensor network with integrated solar photovoltaic system for internet of smart home-building (IoSHB) applications. Micromachines 2021, 12, 653. [Google Scholar] [CrossRef]
- Li, X.; Bi, C.; Li, Z.Y.; Liu, B.X.; Wang, T.T.; Zhang, S.C. A piezoelectric and electromagnetic hybrid galloping energy harvester with the magnet embedded in the bluff body. Micromachines 2021, 12, 626. [Google Scholar] [CrossRef]
- Jaziri, N.; Boughamoura, A.; Muller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of thermoelectric generators: Technologies and common applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Pan, H.Y.; Qi, L.F.; Zhang, Z.T.; Yan, J.Y. Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review. Appl. Energy 2021, 286, 116518. [Google Scholar] [CrossRef]
- Sharpes, N.; Vučković, D.; Priya, S. Floor tile energy harvester for self-powered wireless occupancy sensing. Energy Harvest. Syst. 2016, 3, 43–60. [Google Scholar] [CrossRef]
- Kuang, Y.; Daniels, A.; Zhu, M. A sandwiched piezoelectric transducer with flex end-caps for energy harvesting in large force environments. J. Phys. D Appl. Phys. 2017, 50, 345501. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, A.; Wang, Y.; Dai, X.; Lu, Y.; Wang, F. Rotational electromagnetic energy harvester for human motion application at low frequency. Appl. Phys. Lett. 2020, 116, 053902. [Google Scholar] [CrossRef]
- Isarakorn, D.; Jayasvasti, S.; Panthongsy, P.; Janphuang, P.; Hamamoto, K. Design and evaluation of double-stage energy harvesting floor tile. Sustainability 2019, 11, 5582. [Google Scholar] [CrossRef] [Green Version]
- Panthongsy, P.; Isarakorn, D.; Janphuang, P.; Hamamoto, K. Fabrication and evaluation of energy harvesting floor using piezoelectric frequency up-converting mechanism. Sens. Actuators A -Phys. 2018, 279, 321–330. [Google Scholar] [CrossRef]
- Kim, K.B.; Cho, J.Y.; Jabbar, H.; Ahn, J.H.; Hong, S.D.; Woo, S.B.; Sung, T.H. Optimized composite piezoelectric energy harvesting floor tile for smart home energy management. Energy Convers. Manag. 2018, 171, 31–37. [Google Scholar] [CrossRef]
- He, M.; Wang, S.; Zhong, X.; Guan, M. Study of a piezoelectric energy harvesting floor structure with force amplification mechanism. Energies 2019, 12, 3516. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.; Tang, L.H.; Tao, K.; Aw, K. Design and optimisation of an underfloor energy harvesting system. Sens. Actuators A-Phys. 2019, 285, 613–622. [Google Scholar] [CrossRef]
- Puscasu, O.; Counsell, N.; Herfatmanesh, M.R.; Peace, R.; Patsavellas, J.; Day, R. Powering lights with piezoelectric energy-harvesting floors. Energy Technol. 2018, 6, 906–916. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Lu, G.; Cong, M.; Wang, X.; Ren, L. Gathering energy from ultra-low-frequency human walking using a double-frequency up-conversion harvester in public squares. Energy Convers. Manag. 2020, 217, 112958. [Google Scholar] [CrossRef]
- Shi, H.; Yue, Y.; Wang, H.; Xu, J.; Mei, X. Design and performance analysis of human walking induced energy recovery system by means of hydraulic energy conversion and storage. Energy Convers. Manag. 2020, 217, 113008. [Google Scholar] [CrossRef]
- Muñoz, C.Q.G.; Alcalde, G.Z.; Márquez, F.P.G. Analysis and comparison of macro fiber composites and lead zirconate titanate (PZT) discs for an energy harvesting floor. Appl. Sci. 2020, 10, 5951. [Google Scholar] [CrossRef]
- Gu, L.; German, L.; Li, T.; Li, J.; Shao, Y.; Long, Y.; Wang, J.Y.; Wang, X.D. Energy harvesting floor from commercial cellulosic materials for a self-powered wireless transmission sensor system. ACS Appl. Mater. Interfaces 2021, 13, 5133–5141. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Q. Design and testing of a new dual-axial underfloor piezoelectric energy harvester. Sens. Actuators A -Phys. 2020, 303, 111858. [Google Scholar] [CrossRef]
- Hwang, S.J.; Jung, H.J.; Kim, J.H.; Ahn, J.H.; Song, D.; Song, Y.; Lee, H.L.; Moon, S.P.; Park, H.; Sung, T.H. Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps. Curr. Appl. Phys. 2015, 15, 669–674. [Google Scholar] [CrossRef]
- Paradiso, J.A.; Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervas. Comput. 2005, 4, 18–27. [Google Scholar] [CrossRef]
- Guan, M.; Wang, K.; Xu, D.; Liao, W.H. Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes. Energy Convers. Manag. 2017, 138, 30–37. [Google Scholar] [CrossRef]
- Morel, A.; Brenes, A.; Gibus, D.; Lefeuvre, E.; Gasnier, P.; Pillonnet, G.; Badel, A. A comparative study of electrical interfaces for tunable piezoelectric vibration energy harvesting. Smart Mater. Struct. 2022, 31, 045016. [Google Scholar] [CrossRef]
Properties | Upper Plate | Lower Plate | PPA-1001 |
---|---|---|---|
Material | aluminum alloy 5056 | PZT-5J | |
Density (Kg/m3) | 2660 | 7800 | |
Young’s modulus (GPa) | 72 | 51 | |
Poisson’s ratio | 0.33 | 0.31 | |
Tensile yield strength (MPa) | 290 | 210 | |
Dimension (mm) | 350 × 200 × 10 | 46 × 23.4 × 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, X.; Wang, H.; Chen, L.; Guan, M. Design and Comparative Study of a Small-Stroke Energy Harvesting Floor Based on a Multi-Layer Piezoelectric Beam Structure. Micromachines 2022, 13, 736. https://doi.org/10.3390/mi13050736
Zhong X, Wang H, Chen L, Guan M. Design and Comparative Study of a Small-Stroke Energy Harvesting Floor Based on a Multi-Layer Piezoelectric Beam Structure. Micromachines. 2022; 13(5):736. https://doi.org/10.3390/mi13050736
Chicago/Turabian StyleZhong, Xiang, Hengyang Wang, Lin Chen, and Mingjie Guan. 2022. "Design and Comparative Study of a Small-Stroke Energy Harvesting Floor Based on a Multi-Layer Piezoelectric Beam Structure" Micromachines 13, no. 5: 736. https://doi.org/10.3390/mi13050736
APA StyleZhong, X., Wang, H., Chen, L., & Guan, M. (2022). Design and Comparative Study of a Small-Stroke Energy Harvesting Floor Based on a Multi-Layer Piezoelectric Beam Structure. Micromachines, 13(5), 736. https://doi.org/10.3390/mi13050736