Off-State Performance Characterization of an AlGaN/GaN Device via Artificial Neural Networks
Abstract
:1. Introduction
2. Off State Performance Prediction
3. Results and Discussion
3.1. ANN Model Prediction for Off-State I–V Curve
3.2. The Effectiveness of Introducing Conversion Function
3.3. Breakdown Voltage Extraction
3.4. Time Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Liu, X.; Wei, K.; Huang, S.; Chen, X.; Zhang, Y.; Zheng, Y.; Liu, G.; Yuan, T.; Wang, X.; et al. Suppression of Gate Leakage Current in Ka-Band AlGaN/GaN HEMT with 5-Nm SiN Gate Dielectric Grown by Plasma-Enhanced ALD. IEEE Trans. Electron Devices 2021, 68, 49–52. [Google Scholar] [CrossRef]
- Green, B.M.; Chu, K.K.; Chumbes, E.M.; Smart, J.A.; Shealy, J.R.; Eastman, L.F. The Effect of Surface Passivation on the Microwave Characteristics of Undoped AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2000, 21, 268–270. [Google Scholar] [CrossRef]
- del Alamo, J.A.; Lee, E.S. Stability and Reliability of Lateral GaN Power Field-Effect Transistors. IEEE Trans. Electron Devices 2019, 66, 4578–4590. [Google Scholar] [CrossRef]
- Vigneshwara Raja, P.; Nallatamby, J.-C.; DasGupta, N.; DasGupta, A. Trapping Effects on AlGaN/GaN HEMT Characteristics. Solid-State Electron. 2021, 176, 107929. [Google Scholar] [CrossRef]
- Soni, A.; Shikha, S.; Shrivastava, M. On the Role of Interface States in AlGaN/GaN Schottky Recessed Diodes: Physical Insights, Performance Tradeoff, and Engineering Guidelines. IEEE Trans. Electron Devices 2019, 66, 2569–2576. [Google Scholar] [CrossRef]
- Yang, Q.; Qi, G.; Gan, W.; Wu, Z.; Yin, H.; Chen, T.; Hu, G.; Wan, J.; Yu, S.; Lu, Y. Transistor Compact Model Based on Multigradient Neural Network and Its Application in SPICE Circuit Simulations for Gate-All-Around Si Cold Source FETs. IEEE Trans. Electron Devices 2021, 68, 4181–4188. [Google Scholar] [CrossRef]
- Dhillon, H.; Mehta, K.; Xiao, M.; Wang, B.; Zhang, Y.; Wong, H.Y. TCAD-Augmented Machine Learning with and without Domain Expertise. IEEE Trans. Electron Devices 2021, 68, 5498–5503. [Google Scholar] [CrossRef]
- Mehta, K.; Wong, H.-Y. Prediction of FinFET Current-Voltage and Capacitance-Voltage Curves Using Machine Learning with Autoencoder. IEEE Electron Device Lett. 2021, 42, 136–139. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Yao, Y. A Machine Learning-Assisted Model for GaN Ohmic Contacts Regarding the Fabrication Processes. IEEE Trans. Electron Devices 2021, 68, 2212–2219. [Google Scholar] [CrossRef]
- Wang, J.; Kim, Y.-H.; Ryu, J.; Jeong, C.; Choi, W.; Kim, D. Artificial Neural Network-Based Compact Modeling Methodology for Advanced Transistors. IEEE Trans. Electron Devices 2021, 68, 1318–1325. [Google Scholar] [CrossRef]
- Chen, J.; Alawieh, M.B.; Lin, Y.; Zhang, M.; Zhang, J.; Guo, Y.; Pan, D.Z. Powernet: SOI Lateral Power Device Breakdown Prediction with Deep Neural Networks. IEEE Access 2020, 8, 25372–25382. [Google Scholar] [CrossRef]
- Yu, X.; Ni, J.; Li, Z.; Zhou, J.; Kong, C. Reduction in Leakage Current in AlGaN/GaN HEMT with Three Al-Containing Step-Graded AlGaN Buffer Layers on Silicon. Jpn. J. Appl. Phys. 2014, 53, 051001. [Google Scholar] [CrossRef]
- Wang, C.; He, Y.-L.; Ding, N.; Zheng, X.-F.; Zhang, P.; Ma, X.-H.; Zhang, J.-C.; Hao, Y. Simulation and Experimentation for Low Density Drain AlGaN/GaN HEMT. Chin. Phys. Lett. 2014, 31, 038501. [Google Scholar] [CrossRef]
- Schmidt-Hieber, J. Nonparametric Regression Using Deep Neural Networks with ReLU Activation Function. Ann. Stat. 2020, 48, 1875–1897. [Google Scholar] [CrossRef]
- Zhang, Z. Improved Adam Optimizer for Deep Neural Networks. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; IEEE: Banff, AB, Canada, 2018; pp. 1–2. [Google Scholar]
- Takase, T.; Oyama, S.; Kurihara, M. Effective Neural Network Training with Adaptive Learning Rate Based on Training Loss. Neural Netw. 2018, 101, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Alejo, R.; García, V.; Pacheco-Sánchez, J.H. An Efficient Over-Sampling Approach Based on Mean Square Error Back-Propagation for Dealing with the Multi-Class Imbalance Problem. Neural Process. Lett. 2015, 42, 603–617. [Google Scholar] [CrossRef]
Property | GaN |
---|---|
Bandage (eV) | 3.4 |
Critical electric field (MV/cm) | 3.3 |
Thermal conductivity (W/(cm·K)) | 1.3 |
Electron carrier mobility (cm2/(V·s)) | 2000 |
Electron saturation velocity (107 cm/s) | 2.5 |
Structural Parameters | Range |
---|---|
GaN channel thickness t1, (μm) | [0.2, 0.8] |
GaN buffer thickness t2, (μm) | [0.6, 5.4] |
AlGaN barrier thickness tbar, (μm) | [0.005, 0.02] |
The length of Gate to Drain, LGD (μm) | [5, 25] |
Al composition, Al | [0.15, 0.25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Guo, Y.; Zhang, J.; Liu, J.; Yao, Q.; Yao, J.; Zhang, M.; Li, M. Off-State Performance Characterization of an AlGaN/GaN Device via Artificial Neural Networks. Micromachines 2022, 13, 737. https://doi.org/10.3390/mi13050737
Chen J, Guo Y, Zhang J, Liu J, Yao Q, Yao J, Zhang M, Li M. Off-State Performance Characterization of an AlGaN/GaN Device via Artificial Neural Networks. Micromachines. 2022; 13(5):737. https://doi.org/10.3390/mi13050737
Chicago/Turabian StyleChen, Jing, Yufeng Guo, Jun Zhang, Jianhua Liu, Qing Yao, Jiafei Yao, Maolin Zhang, and Man Li. 2022. "Off-State Performance Characterization of an AlGaN/GaN Device via Artificial Neural Networks" Micromachines 13, no. 5: 737. https://doi.org/10.3390/mi13050737
APA StyleChen, J., Guo, Y., Zhang, J., Liu, J., Yao, Q., Yao, J., Zhang, M., & Li, M. (2022). Off-State Performance Characterization of an AlGaN/GaN Device via Artificial Neural Networks. Micromachines, 13(5), 737. https://doi.org/10.3390/mi13050737