Infrared Transmission Characteristics of Phase Transitioning VO2 on Various Substrates
Abstract
:1. Introduction
2. Experimental Details
2.1. VO2 Synthesis
2.2. Characterization Techniques
3. Results and Discussions
3.1. Material Characterization
3.2. Electrical Characterization
3.3. Optical Characterization
- (i)
- Substrate heating by ceramic heater
- (ii)
- Substrate heating assisted by high powered laser
4. Synthesis and Characterization on a Flexible Substrate (Muscovite)
4.1. Synthesis
4.2. Electrical Characterization
- (i)
- Substrate heating without mechanical strain applied
- (ii)
- Substrate heating with tensile strain applied to the sample
- (iii)
- Substrate heating with compressive strain applied to the sample
4.3. Optical Characterization
- (i)
- Substrate heating without mechanical strain applied
- (ii)
- Substrate heating with tensile strain applied to the sample
- (iii)
- Substrate heating with compressive strain applied to the sample
- (iv)
- Substrate heating assisted by high powered laser
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Substrate | Reference | Synthesis Method | Wavelength (nm) | Film Thickness (nm) | Transmitted Power Change (%) | Crystal Type |
---|---|---|---|---|---|---|
Sapphire | Radue et al. [34] | Reactive bias target ion beam deposition | 785 | 80 | 44.4 | Polycrystalline |
This paper | Direct oxidation | 1550 | 140 | 80.84 | Polycrystalline | |
Ma et al. [35] | Reactive magnetron sputtering | 2000 | 20 | 33 | Dual orientation | |
50 | 50 | |||||
Bian et al. [36] | Pulsed laser deposition | 980 | 200 | 48 | Monocrystalline | |
1064 | 200 | 44 | ||||
Zhang et al. [37] | DC magnetron sputtering | 1550 | 140–185 | 45 | Monocrystalline | |
Quartz | Liu et al. [31] | Reactive Pulsed laser ablation | 1250 | - | 32 | Amorphous |
Dejene et al. [8] | Reactive KrF laser ablation | 1550 | 500 | 40.9 | Polycrystalline | |
1800 | 500 | 48.8 | ||||
Zhang et al. [32] | DC magnetron sputtering | 1550 | 140–185 | 41 | - | |
Radue et al. [34] | Reactive Biased Target Ion Beam Deposition | 785 | 80 | 61.1 | Polycrystalline | |
Zhang et al. [29] | RF plasma assisted O-MBE | 1550 | 60 | 40 | Polycrystalline | |
Zhao et al. [38] | Solution based route | 1550 | 25 | Polycrystalline | ||
Kang et al. [39] | Pulsed laser deposition | 1550 | 60 | 20 | Polycrystalline | |
Bae son et al. [40] | IPL sintering | 1550 | 145 | 30 | Polycrystalline | |
Houska et al. [41] | HiPMS | 1550 | 80 | 27 | Polycrystalline | |
Long et al. [42] | Reactive magnetron sputtering | 1550 | 80 | 35 | Polycrystalline | |
This paper | Direct oxidation | 1550 | 140 | 81.86 | Polycrystalline | |
SiO2/Si | This paper | Direct oxidation | 1550 | 140 | 82.8 | Polycrystalline |
Zhang et al. [37] | DC magnetron sputtering | 1550 | 140–185 | 35 | - | |
Yu et al. [43] | RF magnetron sputtering | 1550 | 80 | 37 | Polycrystalline | |
Kang et al. [44] | Solution processed synthesis | 1550 | 150 | 35 | Polycrystalline | |
Luo et al. [45] | Reactive sputtering | 2500 | 400 | 68 | Polycrystalline | |
Zhao et al. [46] | Solution processed synthesis | 1550 | 100 | 35 | Polycrystalline | |
GaN/AlGaN/GaN/Si | This paper | Direct oxidation | 1550 | 140 | 85.33 | Polycrystalline |
Zhang et al. [47] | Molecular beam epitaxy | 2000 | 60 | 30 | Polycrystalline | |
Woo Yang [48] | RF magnetron sputtering | 2400 | 100 | 70 | Polycrystalline | |
Muscovite | This paper | Direct oxidation | 1550 | 140 | 80 | Polycrystalline |
Chen et al. [11] | Pulsed laser deposition | 1550 | 100 | 25 | Polycrystalline |
References
- Fan, L.L.; Chen, S.; Wu, Y.F.; Chen, F.H.; Chu, W.S.; Chen, X.; Zou, C.W.; Wu, Z.Y. Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy. Appl. Phys. Lett. 2013, 103, 131914. [Google Scholar] [CrossRef]
- Baqir, M.A.; Choudhury, P.K. On the VO2 metasurface-based temperature sensor. J. Opt. Soc. Am. 2019, 36, F123–F130. [Google Scholar] [CrossRef]
- Cui, Y.; Ke, Y.; Liu, C.; Chen, Z.; Wang, N.; Zhang, L.; Zhou, Y.; Wang, S.; Gao, Y.; Long, Y. Thermochromic VO2 for Energy-Efficient Smart Windows. Joule Cellpress Rev. 2018, 2, 1707–1746. [Google Scholar] [CrossRef] [Green Version]
- Masina, B.N.; Akande, A.A.; Mwakikunga, B. Effect of laser wavelength in PLD in the orientation and thermochromic properties of VO2 (M1) on a glass substrate. MRS Adv. 2020, 5, 1121–1132. [Google Scholar] [CrossRef]
- Lappalainen, J.; Heinilehto, S.; Saukko, S.; Lantto, V.; Jantunen, H. Microstructure dependent switching properties of VO2 thin films. Sens. Actuators 2018, 142, 250–255. [Google Scholar] [CrossRef]
- Novodvorsky, A.; Parshina, L.S.; Karamova, O.D. Influence of the conditions of pulsed laser deposition on the structural, electrical, and optical properties of VO2 thin films. Bull. Russ. Acad. Sci. 2016, 80, 376–380. [Google Scholar] [CrossRef]
- Taha, M.; Walia, S.; Ahmed, T.; Headland, D.; Withayachumnankul, W.; Sriram, S.; Bhaskaran, M. Insulator–metal transition in substrate-independent VO2 thin film for phase-change devices. Sci. Rep. 2017, 7, 178999. [Google Scholar] [CrossRef]
- Dejene, F.B.; Ocaya, R.O. Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate. Curr. Appl. Phys. 2010, 10, 508–512. [Google Scholar] [CrossRef]
- Suematsu, Y. Long wavelength optical fiber communication. Proc. IEEE 1983, 71, 692–723. [Google Scholar] [CrossRef]
- Azad, S.; Gajula, D.; Koley, G. Synthesis and characterization of VO2 thin films on piezoelectric substrates. Thin Solid Films 2022, 742, 139055. [Google Scholar] [CrossRef]
- Chen, H.-W.; Li, C.-I.; Ma, C.-H.; Chu, Y.-H.; Liu, H.-L. Strain engineering of optical properties in transparent VO2/muscovite heterostructures. Phys. Chem. Chem. Phys. 2021, 23, 8908–8915. [Google Scholar] [CrossRef] [PubMed]
- Kikuzuki, T.; Lippmaa, M. Characterizing a strain-driven phase transition in VO2. Appl. Phys. Lett. 2016, 96, 132207. [Google Scholar] [CrossRef]
- Cabral, P.M.; Pedro, J.C.; Carbalho, N.B. Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design. IEEE Trans. Microw. Theory Tech. 2004, 52, 2585–2592. [Google Scholar] [CrossRef]
- Ballantine, D.S.; Wohltjen, H. Surface acoustic wave devices for chemical analysis. Anal. Chem. 1989, 61, 704A–715A. [Google Scholar] [CrossRef]
- Assouar, M.B.; Elmazria, O.; le Brizwoual, L.; Alnot, P. Reactive DC magnetron sputtering of aluminum nitride film for surface acoustic wave devices. Diam. Relat. Mater. 2002, 11, 413–417. [Google Scholar] [CrossRef]
- Basu, R.; Srihari, V.; Sardar, M.; Srivastava, S.K.; Bera, S.; Dhara, S. Probing phase transition in VO2 with the novel observation of low frequency collective spin excitation. Sci. Rep. 2020, 10, 1977. [Google Scholar] [CrossRef]
- Currie, M.; Mastro, M.A.; Wheeler, V.D. Characterizing the tunable refractive index of vanadium dioxide. Opt. Mater. Express 2017, 7, 1697–1707. [Google Scholar] [CrossRef]
- Rongrong, L.; Peng, H.; Wanxia, H.; Jiazhen, Y.; Jinghan, C. Optical Switching and Color Changing Properties of VO2 Films on Muscovite Substrate. Rare Met. Mater. Eng. 2012, 41, 1327–1330. [Google Scholar] [CrossRef]
- Chen, S.; Lai, J.; Dai, J.; Ma, H.; Wang, H.; Yi, X. Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method. Opt. Express 2009, 17, 24153–24161. [Google Scholar] [CrossRef]
- Lindstrom, R.; Maurice, V.; Zanna, S.; Klein, L.; Grault, H.; Perrigaud, L.; Cohen, C.; Marcus, P. Thin films of vanadium oxide grown on vanadium metal: Oxidation conditions to produce V2O5 films for Li-intercalation applications and characterization by XPS, AFM, RBS/NRA. Surf. Interface Anal. 2006, 38, 6–18. [Google Scholar] [CrossRef]
- Lin, T.; Wang, J.; Liu, G.; Wang, L.; Wang, X.; Zhang, Y. Influence of Discharge Current on Phase Transition Properties of High Quality Polycrystalline VO2 Thin Film Fabricated by HiPIMS. Materials 2017, 10, 633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Lee, J.H.; Zhu, Y.; Nazari, M.; Chen, C.; Wang, H.; Bernussi, A.; Holtz, M.; Fan, Z. Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates. J. Appl. Phys. 2012, 111, 053533. [Google Scholar] [CrossRef]
- Bayati, M.R.; Molaei, R.; Wub, F.; Budai, J.D.; Liu, Y.; Narayan, R.J.; Narayan, J. Correlation between structure and semiconductor-to-metal transition characteristics of VO2/TiO2/sapphire thin film heterostructures. Acta Mater. 2013, 61, 7805–7815. [Google Scholar] [CrossRef]
- Kovács, G.J.; Bürger, D.; Skorupa, I.; Reuther, H.; Heller, R.; Schmidt, H. Effect of the substrate on the insulator–metal transition of vanadium dioxide films. J. Appl. Phys. 2011, 109, 063708. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Goswami, A.; Umarji, A.M. Synthesis of phase pure vanadium dioxide (VO2) thin film by reactive pulsed laser deposition. J. Appl. Phys. 2018, 124, 135301. [Google Scholar] [CrossRef]
- Youn, D.-H.; Lee, J.-W.; Chae, B.-G.; Kim, H.-T.; Maeng, S.-L.; Kang, K.-Y. Growth optimization and electrical characteristics of VO2 films on SiO2/Si amorphous substrates. J. Appl. Phys. 2004, 95, 1407. [Google Scholar] [CrossRef]
- Dang, Y.; Wang, D.; Zhang, X.; Ren, L.; Li, B.; Liu, J. Structure and thermochromic properties of Mo-doped VO2 thin films deposited by sol–gel method. Inorg. Nano Met. Chem. 2019, 49, 120–125. [Google Scholar] [CrossRef]
- Yu, S.; Wang, S.; Lu, M.; Zuo, L. A metal-insulator transition study of VO2 thin films grown on sapphire substrates. J. Appl. Phys. 2017, 122, 235102. [Google Scholar] [CrossRef]
- Slusar, T.; Cho, J.-C.; Kim, B.-J.; Yun, S.J.; Kim, H.-T. Epitaxial growth of higher transition temperature VO2 films on AlN/Si. Appl. Phys. Lett. Mater. 2016, 4, 026101. [Google Scholar]
- Kizuka, H.; Yagi, T.; Jia, J.; Yamashita, Y.; Nakamura, S.; Taketoshi, N.; Shigesato, Y. Temperature dependence of thermal conductivity of VO2 thin films across metal–insulator transition. Jpn. J. Appl. Phys. 2015, 54, 053201. [Google Scholar] [CrossRef]
- Liu, D.-Q.; Zheng, W.-W.; Cheng, H.-F.; Liu, H.-T. Thermochromic VO2 thin film prepared by post annealing treatment of V2O5 thin film. Adv. Mater. Res. 2009, 79–82, 747–750. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, H.-J.; Wang, M.-H.; Miao, L.-H.; Liu, H.-Z.; Zhang, Y.-Z.; Bian, J.-M. VO2 Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy. Materials 2017, 10, 3174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joushaghani, A.; Jeong, J.; Paradis, S.; Alain, D. Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors. Opt. Express 2015, 23, 3657–3668. [Google Scholar] [CrossRef] [PubMed]
- Radue, E.; Crisman, E.; Wang, L.; Kittiwatanakul, S.; Lu, J. Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films. J. Appl. Phys. 2013, 113, 233104. [Google Scholar] [CrossRef]
- Ma, J.; Xu, G.; Miao, L.; Tazawa, M.; Tanemura, S. Thickness-Dependent Structural and Optical Properties of VO2 Thin Films. Jpn. J. Appl. Phys. 2011, 50, 020215. [Google Scholar] [CrossRef]
- Bian, J.; Miao, L.; Zhao, S.; Li, X.; Zou, C.; Zhang, D.; Zhang, Y. Vanadium oxide films deposited on sapphire substrate with in situ AlN stress layer: Structural, electric, and optical properties. J. Mater. Sci. 2015, 50, 5709–5714. [Google Scholar] [CrossRef]
- Zhang, C.; Koughia, C.; Günes, O.; Luo, J.; Hossain, N.; Li, Y.; Cui, X.; Wen, S.-J.; Wong, R.; Yang, Q.; et al. Synthesis, structure and optical properties of high-quality VO2 thin films grown on silicon, quartz and sapphire substrates by high temperature magnetron sputtering: Properties through the transition temperature. J. Alloys Compd. 2020, 848, 156323. [Google Scholar] [CrossRef]
- Zhao, L.; Miao, L.; Tanemura, S.; Zhou, J.; Chen, L.; Xiao, X.; Xu, G. A low cost preparation of VO2 thin film with improved thermochromic properties from a solution-based process. Thin Solid Films 2013, 543, 157–161. [Google Scholar] [CrossRef]
- Kang, C.; Zhang, C.; Yao, Y.; Yang, Y.; Zong, H.; Zhang, L.; Li, M. Enhanced Thermochromic Properties of Vanadium Dioxide (VO2)/Glass Heterostructure by Inserting a Zr-Based Thin Film Metallic Glasses (Cu50Zr50) Buffer Layer. Appl. Sci. 2018, 8, 1751. [Google Scholar] [CrossRef] [Green Version]
- Son, S.B.; Youn, J.W.; Kim, K.-S.; Kim, D.U. Optical properties of periodic micropatterned VO2 thermochromic films prepared by thermal and intense pulsed light sintering. Mater. Des. 2019, 182, 107970. [Google Scholar] [CrossRef]
- Houska, J.; Kolenaty, D.; Vlcek, J.; Cerstvy, R. Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at a low temperature of 300 °C. Thin Solid Films 2018, 660, 463–470. [Google Scholar] [CrossRef]
- Long, S.; Cao, X.; Lid, N.; Xine, Y.; Sun, G.; Chang, T.; Bao, S.; Jin, P. Application-oriented VO2 thermochromic coatings with composite structures: Optimized optical performance and robust fatigue properties. Sol. Energy Mater. Sol. Cells 2019, 189, 138–148. [Google Scholar] [CrossRef]
- Yu, J.-H.; Nam, S.-H.; Lee, J.W.; Boo, J.-H. Enhanced Visible Transmittance of Thermochromic VO2 Thin Films by SiO2 Passivation Layer and Their Optical Characterization. Materials 2016, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Gao, Y.; Luo, H. A Novel Solution Process for the Synthesis of VO2 Thin Films with Excellent Thermochromic Properties. Appl. Mater. Interfaces 2009, 1, 2211–2218. [Google Scholar] [CrossRef]
- Luo, Y.Y.; Zhu, L.Q.; Zhang, Y.X.; Pan, S.S.; Xu, S.C.; Liu, M.; Li, G.H. Optimization of microstructure and optical properties of VO2 thin film prepared by reactive sputtering. J. Appl. Phys. 2013, 113, 183520. [Google Scholar] [CrossRef]
- Zhao, L.; Miao, L.; Liu, C.; Li, C.; Asaka, T.; Kang, Y.; Iwamoto, Y.; Tanemura, S.; Gu, H.; Su, H. Solution-Processed VO2-SiO2 Composite Films with Simultaneously Enhanced Luminous Transmittance, Solar Modulation Ability and Anti-Oxidation property. Sci. Rep. 2014, 4, 7000. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, B.; Wang, M.; Feng, Y.; Bian, J. Growth and Characteristics of n-VO2/p-GaN based Heterojunctions. J. Wuhan Univ. Technol.-Mater. Sci. Educ. 2019, 35, 342–347. [Google Scholar] [CrossRef]
- Yang, H.W.; Sohn, J.I.; Yang, J.H.; Jang, J.E.; Cha, S.N.; Kim, J.; Kang, D.J. Unusual M2-mediated metal-insulator transition in epitaxial VO2 thin films on GaN substrates. Europhys. Lett. 2015, 109, 27004. [Google Scholar] [CrossRef]
Substrate | Optimized VO2 Growth Parameters | |||
---|---|---|---|---|
Temperature (°C) | Pressure (Pa) | Oxidation Time (min) | Vanadium Thickness (nm) | |
c-plane sapphire | 475 °C | 5.2 | 50 | 70 |
SiO2/Si | 475 °C | 6 | 40 | 70 |
AT-cut quartz | 475 °C | 7.5 | 70 | 70 |
GaN/AlGaN/GaN/Si | 475 °C | 4.5 | 60 | 70 |
Muscovite | 475 °C | 4.6 | 60 | 70 |
Parameters | c-Plane Sapphire | SiO2/Si | AT-Cut Quartz | GaN/AlGaN/GaN/Si | Muscovite |
---|---|---|---|---|---|
RMS roughness of AFM image (nm) | 8.19 | 7.37 | 10.3 | 9.75 | 12.2 |
2θ angles of prominent XRD peaks (FWHM) | 38.36° (020) (0.14°) | 69.28° (202) (0.06°) | 38.5° (020) (0.20°) | 38.52° (020) (0.16°) | 36.8° |
2θ angles of common XRD peaks (FWHM) | 38.36° (020) (0.14°) | 38.42° (202) (0.16°) | 38.5° (020) (0.20°) | 38.52° (020) (0.16°) | 36.8° |
Electrical Transition temperature (forward) | 69 °C | 76 °C | 70 °C | 67 °C | 61 °C |
Optical Transition temperature at λ = 1550 nm | 64 °C | 69 °C | 59 °C | 64 °C | 79 °C |
Resistance transition ratio | 938 | 926 | 958 | 477 | 417 |
Change of Transmitted laser power or color at λ = 1550 nm (%) | 80.84 | 82.8 | 81.86 | 85.33 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azad, S.; Gajula, D.; Sapkota, N.; Rao, A.; Koley, G. Infrared Transmission Characteristics of Phase Transitioning VO2 on Various Substrates. Micromachines 2022, 13, 812. https://doi.org/10.3390/mi13050812
Azad S, Gajula D, Sapkota N, Rao A, Koley G. Infrared Transmission Characteristics of Phase Transitioning VO2 on Various Substrates. Micromachines. 2022; 13(5):812. https://doi.org/10.3390/mi13050812
Chicago/Turabian StyleAzad, Samee, Durga Gajula, Nawraj Sapkota, Apparao Rao, and Goutam Koley. 2022. "Infrared Transmission Characteristics of Phase Transitioning VO2 on Various Substrates" Micromachines 13, no. 5: 812. https://doi.org/10.3390/mi13050812
APA StyleAzad, S., Gajula, D., Sapkota, N., Rao, A., & Koley, G. (2022). Infrared Transmission Characteristics of Phase Transitioning VO2 on Various Substrates. Micromachines, 13(5), 812. https://doi.org/10.3390/mi13050812