Poling-Free Hydroxyapatite/Polylactide Nanogenerator with Improved Piezoelectricity for Energy Harvesting
Abstract
:1. Introduction
2. Experiment
2.1. Preparation of HA/PLLA Composite Films
2.2. Preparation of HA/PLLA PENG
2.3. Characterization and Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gandini, A. The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem. 2011, 13, 1061–1083. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, L.; Shi, R.; Zhang, L. Progress in Polymer Science: Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers—A review. Cell. Polym. 2012, 37, 211–218. [Google Scholar]
- Junginger, M.; de Wit, M.; Sikkema, R.; Faaij, A. International bioenergy trade in the Netherlands. Biomass Bioenergy 2008, 32, 749–780. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Geng, D.; Liang, E.; Wang, X. Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy 2015, 15, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Zhao, P.; McConohy, G.; Yang, H.; Tong, Y.; Wang, X. Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems. Adv. Energy Mater. 2014, 4, 1301624. [Google Scholar] [CrossRef]
- Huskinson, B.; Marshak, M.; Suh, C.; Er, S.; Gerhardt, M.; Galvin, C.J.; Chen, X.; Aspuru-Guzik, A.; Gordon, R.G.; Aziz, M.J. A metal-free organic–inorganic aqueous flow battery. Nature 2014, 505, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Shi, B.; Fan, F.; Wang, X.; Yan, L.; Yuan, W.; Wang, S.; Liu, H.; Li, Z.; Wang, Z.L. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 2014, 26, 5851–5856. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.-K.; Lin, W.Z.; Yi, F.; Li, X.; Pradel, K.C.; Zi, Y.; Wu, C.-I.; He, J.-H.; Zhang, Y.; Wang, Z.L. A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv. Mater. 2015, 27, 3817–3824. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, D.J. Bioprocessing—No longer a field of dreams. In Macromolecular Symposia; Wiley Online Library: New York, NY, USA, 2003; Volume 201, pp. 271–282. [Google Scholar]
- Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef] [PubMed]
- Gruber, P.R.; Drumright, R.E.; Henton, D.E. Polylactic acid technology. Adv. Mater. 2000, 12, 1841–1846. [Google Scholar]
- Hu, X.; Kang, H.; Li, Y.; Geng, Y.; Wang, R.; Zhang, L. Preparation, morphology and superior performances of biobased thermoplastic elastomer by in situ dynamical vulcanization for 3D-printed materials. Polymer 2017, 108, 11–20. [Google Scholar] [CrossRef]
- Fukada, E. New piezoelectric polymers. Jpn. J. Appl. Phys. 1998, 37, 2775. [Google Scholar] [CrossRef]
- Lee, S.J.; Arun, A.P.; Kim, K.J. Piezoelectric properties of electrospun poly (l-lactic acid) nanofiber web. Mater. Lett. 2015, 148, 58–62. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, J.; Wang, Z.L.; Ren, K. A Poly (l-Lactic Acid) Polymer-Based Thermally Stable Cantilever for Vibration Energy Harvesting Applications. Adv. Sustain. Syst. 2017, 1, 1700068. [Google Scholar] [CrossRef]
- Tajitsu, Y. Development of environmentally friendly piezoelectric polymer film actuator having multilayer structure. Jpn. J. Appl. Phys. 2016, 55, 04EA07. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Hu, Y.; Guo, Z.; Liu, S.; Zhang, Q.; Zhang, X.; Xiang, Y. High-energy conversion-efficiency direct-alternating-current hybrid generator with piezoelectric polylactide and dynamic Schottky diode. J. Mater. Sci. 2020, 55, 9014–9026. [Google Scholar] [CrossRef]
- Wang, X.; Ling, X.; Hu, Y.; Hu, X.; Zhang, Q.; Sun, K.; Xiang, Y. Electronic skin based on PLLA/TFT/PVDF-TrFE array for Multi-Functional tactile sensing and visualized restoring. Chem. Eng. J. 2022, 434, 134735. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Shi, Y.; Sun, Z.; Zhang, L. Poling-Free Hydroxyapatite/Polylactide Nanogenerator with Improved Piezoelectricity for Energy Harvesting. Micromachines 2022, 13, 889. https://doi.org/10.3390/mi13060889
Liu W, Shi Y, Sun Z, Zhang L. Poling-Free Hydroxyapatite/Polylactide Nanogenerator with Improved Piezoelectricity for Energy Harvesting. Micromachines. 2022; 13(6):889. https://doi.org/10.3390/mi13060889
Chicago/Turabian StyleLiu, Wei, Yunlai Shi, Zhijun Sun, and Li Zhang. 2022. "Poling-Free Hydroxyapatite/Polylactide Nanogenerator with Improved Piezoelectricity for Energy Harvesting" Micromachines 13, no. 6: 889. https://doi.org/10.3390/mi13060889
APA StyleLiu, W., Shi, Y., Sun, Z., & Zhang, L. (2022). Poling-Free Hydroxyapatite/Polylactide Nanogenerator with Improved Piezoelectricity for Energy Harvesting. Micromachines, 13(6), 889. https://doi.org/10.3390/mi13060889