Cashew Gum: A Review of Brazilian Patents and Pharmaceutical Applications with a Special Focus on Nanoparticles
Abstract
:1. Introduction
2. Natural Polymers
2.1. Gums
2.1.1. Cashew Gum
2.1.2. Applications of Cashew Gum in the Development of Micro- and Nanoparticles
Variation of CG | Polymers | Encapsulated Bioactive | Method | Size | Objective | References |
---|---|---|---|---|---|---|
CG carboxymethylated | Chitosan | Bovine serum albumin | Nanoprecipitation | 500–580 μm | Albumin release due to swelling behavior. | [63] |
CG copolymerized | Acrylic acid | - | Self-embedding copolymerization | 71–603 nm | Prepare CG particles and acrylic acid and evaluate the responsive pH behavior. | [68] |
CG | Chitosan | Lippia menosides essential oil | Emulsion | 1.50–1.56 mm | Larvicidal activity. | [69] |
CG | Chitosan | Lippia menosides essential oil | Emulsion | 219–674 nm | Effects of spray-drying and the concentration of polymers in the preparation of particles. | [70] |
CG | Alginate | Lippia menosides essential oil | Emulsion | 223–399 nm | Effects of spray-drying and the concentration of polymers in the preparation of the particles. | [64] |
CG acetylated | - | Lippia menosides indomethacin | Self-assembly | 140–179 nm | Evaluation of the release profile of the produced particle confirming its application in drug release. | [71] |
CG | Inulin | Ginger essential oil | Emulsion | 13.43–18.52 μm | To evaluate the influence of CG and inulin, in powder particles, in order to obtain functional products with ginger essential oil. | [72] |
CG copolymerized | N-isopropylacrylamide (97%) | - | Radical polymerization | 11–23 nm | Copolymerize the cashew gum in order to make it sensitive to stimuli for the purpose of drug administration. | [73] |
CG | Type B gelatin | Carotenoid | Emulsion | 113 μm 23–42.4 μm | Encapsulate astaxanthin in the polymer particle without the use of solvents. | [66] |
CG acetylated | - | Diclofenac diethylamine | Nanoprecipitation/Dialysis | 79.32 nm/ 302 nm | Encapsulate the drug using different methodologies and compare them, in order to develop a transdermal delivery device. | [74] |
CG | - | Omega 3 | Emulsion | 29.9 μm | Substitute potential for CG in the encapsulation of Omega 3. | [55] |
CG | Maltodextrin | Green tea leaf extracts | Emulsion | 2.50–3.64 μm | Develop alternative microcapsules of green tea extract for the food industry for health benefits. | [75] |
CG | - | D-limonene | Emulsion | 17–26.01 μm | Evaluate the effects of high dynamic pressure (APD) on emulsifying and encapsulating characteristics of CG. | [76] |
CG acetylated | Monobasic sodium phosphate, bibasic sodium phosphate and sodium lauryl sulfate | Amphotericin B | Self-assembly | 50–900 nm | To investigate the influence of temperature, time and proportion of the acetylating agent on the acetylation of cashew gum as well as the influence of the degree of substitution of derivatives on their properties. | [77] |
CG | Poly (L-lactide) | Amphotericin B | Nanoprecipitation and Pickering Emulsion | 100–3500 nm | Combine different particle production methodologies to encapsulate amphotericin B and improve its oral absorption, enhancing the treatment of leishmaniasis. | [78] |
CG acetylated | - | Epi-isopiloturine | Dialysis | 107–156 nm | Increase the solubility of the alkaloid and enable its controlled release. | [79] |
CG acetylated | - | Indomethacin | Pickering emulsion | 263.7–325 nm | Evaluate the points that make it possible to develop CG particles acetylated by Pickering Emulsion without surfactant, with and without Indomethacin. | [80] |
CG | Gelatin | Green coffee oil | Complex coacervation | 13.9–25.7 μm | Produce green coffee oil microcapsules by complex coacervation for addition to juices. | [81] |
CG copolymerized | L-Lactide | Amphotericin B | Dialysis | 223–233 nm | Produce copolymerized CG particles by dialysis to encapsulate amphotericin B and compare with previous study. | [82] |
CG | Potassium hexacyanoferrate (II) trihydrate and iron (III) chloride | - | Nanoprecipitation | 63.5–85.0 nm | Develop a hybrid nanomaterial (Prussian Blue + CG (used to stabilize the matrix)) to act as an electrochemical sensor for the oxidation of some drugs. | [83] |
CG Carboxymethylated | Cashew gum and carboxymethylated | cashew gum | Green synthesis | 100.9–144.7 nm | Antibacterial activity of silver nanoparticles based on cashew gum and carboxymethylated cashew gum. | [67] |
3. Cashew Gum Patent Perspectives in Brazil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhardwaj, T.R.; Kanwar, M.; Lal, R.; Gupta, A. Natural gums and modified natural gums as sustained-release carriers. Drug Dev. Ind. Pharm. 2000, 26, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Halake, K.; Kim, H.J.; Birajdar, M.; Kim, B.S.; Bae, H.; Lee, C.; Kim, Y.J.; Kim, S.; Ahn, S.; An, S.Y. Recently developed applications for natural hydrophilic polymers. J. Ind. Eng. Chem. 2016, 40, 16–22. [Google Scholar] [CrossRef]
- Gopinath, V.; Saravanan, S.; Al-Maleki, A.R.; Ramesh, M.; Vadivelu, J. A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed. Pharmacother. 2018, 107, 96–108. [Google Scholar] [CrossRef]
- Choudhary, P.D.; Pawar, H.A. Recently investigated natural gums and mucilages as pharmaceutical excipients: An overview. J. Pharm. 2014, 2014, 204849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, A.; Tyagi, S.; Gupta, R.K.; Tyagi, Y.K. Natural gums of plant origin as edible coatings for food industry applications. Crit. Rev. Biotechnol. 2017, 37, 959–973. [Google Scholar] [CrossRef]
- Goswami, S.; Naik, S. Natural gums and its pharmaceutical application. J. Sci. Innov. Res. 2014, 3, 112–121. [Google Scholar] [CrossRef]
- Cunha, P.L.R.d.; Paula, R.C.M.d.; Feitosa, J. Polissacarídeos da biodiversidade brasileira: Uma oportunidade de transformar conhecimento em valor econômico. Química Nova 2009, 32, 649–660. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.-H.; Jin, M.-L.; Morris, G.A.; Zha, X.-Q.; Chen, H.-Q.; Yi, Y.; Li, J.-E.; Wang, Z.-J.; Gao, J.; Nie, S.-P. Advances on bioactive polysaccharides from medicinal plants. Crit. Rev. Food Sci. Nutr. 2016, 56, S60–S84. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Xu, W.; Wang, H.-X.; Huang, F.; Wang, L.-M. Natural polysaccharides experience physiochemical and functional changes during preparation: A review. Carbohydr. Polym. 2020, 234, 115896. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 2018, 183, 91–101. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, B.; Wang, Z.; Li, M.; Zhao, W. Natural polysaccharides with immunomodulatory activities. Mini Rev. Med. Chem. 2020, 20, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Mei, X.; Hu, J. The antioxidant activities of natural polysaccharides. Curr. Drug Targets 2017, 18, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, M.; Yu, M.; Shen, M.; Wang, Q.; Yu, Y.; Xie, J. Natural polysaccharides exhibit anti-tumor activity by targeting gut microbiota. Int. J. Biol. Macromol. 2019, 121, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhou, Q.; Yin, J.-J.; Yao, Y.; Zhang, J.-L. Anti-diabetic effects of polysaccharides from Talinum triangulare in streptozotocin (STZ)-induced type 2 diabetic male mice. Int. J. Biol. Macromol. 2015, 72, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Chen, L.; Yang, L.; Ji, X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Fang, J.; Guo, Q.; Wang, M.; Li, Y.; Meng, Y.; Huang, L. Advances in antiviral polysaccharides derived from edible and medicinal plants and mushrooms. Carbohydr. Polym. 2020, 229, 115548. [Google Scholar] [CrossRef] [PubMed]
- Gálvez-Iriqui, A.C.; García-Romo, J.S.; Cortez-Rocha, M.O.; Burgos-Hernández, A.; Burboa-Zazueta, M.G.; Luque-Alcaraz, A.G.; Calderón-Santoyo, M.; Argüelles-Monal, W.M.; Plascencia-Jatomea, M. Phytotoxicity, cytotoxicity, and in vivo antifungal efficacy of chitosan nanobiocomposites on prokaryotic and eukaryotic cells. Environ. Sci. Pollut. Res. 2021, 28, 3051–3065. [Google Scholar] [CrossRef]
- Cai, W.; Xu, H.; Xie, L.; Sun, J.; Sun, T.; Wu, X.; Fu, Q. Purification, characterization and in vitro anticoagulant activity of polysaccharides from Gentiana scabra Bunge roots. Carbohydr. Polym. 2016, 140, 308–313. [Google Scholar] [CrossRef]
- De Jesus Raposo, M.F.; de Morais, A.M.M.B. Microalgae for the prevention of cardiovascular disease and stroke. Life Sci. 2015, 125, 32–41. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, J.; Di, L.; Li, J.; Hu, L.; Qiao, H.; Wang, L.; Feng, Y. Resource, chemical structure and activity of natural polysaccharides against alcoholic liver damages. Carbohydr. Polym. 2020, 241, 116355. [Google Scholar] [CrossRef]
- Polysaccharides and Oligosaccharides Market. 2022. Available online: https://www.factmr.com/report/427/polysaccharides-oligosaccharides-market (accessed on 15 June 2022).
- Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr. Polym. 2013, 92, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm. 2019, 561, 244–264. [Google Scholar] [CrossRef] [PubMed]
- Goh, C.H.; Heng, P.W.S.; Chan, L.W. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr. Polym. 2012, 88, 1–12. [Google Scholar] [CrossRef]
- Lyons, J.G.; Devine, D.M.; Kennedy, J.E.; Geever, L.M.; O’Sullivan, P.; Higginbotham, C.L. The use of Agar as a novel filler for monolithic matrices produced using hot melt extrusion. Eur. J. Pharm. Biopharm. 2006, 64, 75–81. [Google Scholar] [CrossRef]
- Stephen, A.M.; Phillips, G.O. Food Polysaccharides and Their Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Lu, E.-X.; Jiang, Z.-Q.; Zhang, Q.-Z.; Jiang, X.-G. A water-insoluble drug monolithic osmotic tablet system utilizing gum arabic as an osmotic, suspending and expanding agent. J. Control. Release 2003, 92, 375–382. [Google Scholar] [CrossRef]
- Beneke, C.E.; Viljoen, A.M.; Hamman, J.H. Polymeric plant-derived excipients in drug delivery. Molecules 2009, 14, 2602–2620. [Google Scholar] [CrossRef]
- Williams, P.A.; Phillips, G.O. Gum arabic. In Handbook of Hydrocolloids; Elsevier: Amsterdam, The Netherlands, 2021; pp. 627–652. [Google Scholar]
- Ahmad, S.; Ahmad, M.; Manzoor, K.; Purwar, R.; Ikram, S. A review on latest innovations in natural gums based hydrogels: Preparations & applications. Int. J. Biol. Macromol. 2019, 136, 870–890. [Google Scholar]
- Bonferoni, M.; Rossi, S.; Tamayo, M.; Pedraz, J.; Dominguez-Gil, A.; Caramella, C. On the employment of λ-carrageenan in a matrix system. II. λ-Carrageenan and hydroxypropylmethylcellulose mixtures. J. Control. Release 1994, 30, 175–182. [Google Scholar] [CrossRef]
- Prajapat, P.; Talesara, G.L. Synthesis and Anti-inflammatory Screening of Some Mono and Bis-Alkoxyphthalimide Linked Benzimidazole and their Quinazoline and Pyrimidine Derivatives. J. Heterocycl. Chem. 2016, 53, 1603–1610. [Google Scholar] [CrossRef]
- Deshmukh, A.S.; Setty, C.M.; Badiger, A.M.; Muralikrishna, K. Gum ghatti: A promising polysaccharide for pharmaceutical applications. Carbohydr. Polym. 2012, 87, 980–986. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, W.; Nie, K.; Gao, Z.; Fang, Y.; Nishinari, K.; Phillips, G.O.; Jiang, F. Effect of gum arabic, gum ghatti and sugar beet pectin as interfacial layer on lipid digestibility in oil-in-water emulsions. Food Biophys. 2016, 11, 292–301. [Google Scholar] [CrossRef]
- Madni, A.; Khalid, A.; Wahid, F.; Ayub, H.; Khan, R.; Kousar, R. Preparation and Applications of Guar Gum Composites in Biomedical, Pharmaceutical, Food, and Cosmetics Industries. Curr. Nanosci. 2021, 17, 365–379. [Google Scholar] [CrossRef]
- Prasad, Y.R.; Krishnaiah, Y.; Satyanarayana, S. In vitro evaluation of guar gum as a carrier for colon-specific drug delivery. J. Control. Release 1998, 51, 281–287. [Google Scholar] [CrossRef]
- Krishnaiah, Y.; Satyanarayana, V.; Kumar, B.D.; Karthikeyan, R. In vitro drug release studies on guar gum-based colon targeted oral drug delivery systems of 5-fluorouracil. Eur. J. Pharm. Sci. 2002, 16, 185–192. [Google Scholar] [CrossRef]
- Krishnaiah, Y.; Satyanarayana, S.; Prasad, Y.R.; Rao, S.N. Evaluation of guar gum as a compression coat for drug targeting to colon. Int. J. Pharm. 1998, 171, 137–146. [Google Scholar] [CrossRef]
- Sreenivasa, B.; Prasanna, R.; Mary, S. Design and studies of gum karaya matrix tablet. Int. J. Pharm. Excip. 2000, 2, 239–242. [Google Scholar]
- Munday, D.L.; Cox, P.J. Compressed xanthan and karaya gum matrices: Hydration, erosion and drug release mechanisms. Int. J. Pharm. 2000, 203, 179–192. [Google Scholar] [CrossRef]
- Park, C.R.; Munday, D.L. Evaluation of selected polysaccharide excipients in buccoadhesive tablets for sustained release of nicotine. Drug Dev. Ind. Pharm. 2004, 30, 609–617. [Google Scholar] [CrossRef]
- Soumya, R.; Raghu, K.; Abraham, A. Locust bean gum-based micro-and nanomaterials for biomedical applications. In Micro-and Nanoengineered Gum-Based Biomaterials for Drug Delivery and Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 241–253. [Google Scholar]
- Tian, H.; Xiang, D.; Li, C. Tea polyphenols encapsulated in W/O/W emulsions with xanthan gum–locust bean gum mixture: Evaluation of their stability and protection. Int. J. Biol. Macromol. 2021, 175, 40–48. [Google Scholar] [CrossRef]
- Nagaraja, K.; Rao, K.M.; Reddy, G.V.; Rao, K. Tragacanth gum-based multifunctional hydrogels and green synthesis of their silver nanocomposites for drug delivery and inactivation of multidrug resistant bacteria. Int. J. Biol. Macromol. 2021, 174, 502–511. [Google Scholar] [CrossRef]
- Komeilyfard, A.; Fazel, M.; Akhavan, H.; Mousakhani Ganjeh, A. Effect of Angum gum in combination with tragacanth gum on rheological and sensory properties of ketchup. J. Texture Stud. 2017, 48, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Xiao, N.; He, W.; Zhao, Y.; Yao, Y.; Xu, M.; Du, H.; Wu, N.; Tu, Y. Effect of pH and xanthan gum on emulsifying property of ovalbumin stabilized oil-in water emulsions. LWT 2021, 147, 111621. [Google Scholar] [CrossRef]
- Dhopeshwarkar, V.; Zatz, J.L. Evaluation of xanthan gum in the preparation of sustained release matrix tablets. Drug Dev. Ind. Pharm. 1993, 19, 999–1017. [Google Scholar] [CrossRef]
- Pan, X.; Veroniaina, H.; Su, N.; Sha, K.; Jiang, F.; Wu, Z.; Qi, X. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J. Pharm. Sci. 2021, 16, 687–703. [Google Scholar] [CrossRef]
- Ye, F.; Astete, C.E.; Sabliov, C.M. Entrapment and delivery of α-tocopherol by a self-assembled, alginate-conjugated prodrug nanostructure. Food Hydrocoll. 2017, 72, 62–72. [Google Scholar] [CrossRef]
- Mendes, C.; Costa, J.; Vicente, A.A.; Oliveira, M.B.P.; Mafra, I. Cashew nut allergy: Clinical relevance and allergen characterisation. Clin. Rev. Allergy Immunol. 2019, 57, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, N.N.; Mothé, C.G.; Mothé, M.G.; de Oliveira, L.G. Cashew nut and cashew apple: A scientific and technological monitoring worldwide review. J. Food Sci. Technol. 2020, 57, 12–21. [Google Scholar] [CrossRef] [PubMed]
- De Paula, R.; Rodrigues, J. Composition and rheological properties of cashew tree gum, the exudate polysaccharide from Anacardium occidentale L. Carbohydr. Polym. 1995, 26, 177–181. [Google Scholar] [CrossRef]
- Ali, B.H.; Ziada, A.; Blunden, G. Biological effects of gum arabic: A review of some recent research. Food Chem. Toxicol. 2009, 47, 1–8. [Google Scholar] [CrossRef]
- Phillips, G.O. Acacia gum (Gum Arabic): A nutritional fibre; metabolism and calorific value. Food Addit. Contam. 1998, 15, 251–264. [Google Scholar] [CrossRef]
- Botrel, D.A.; Borges, S.V.; de Barros Fernandes, R.V.; Antoniassi, R.; de Faria-Machado, A.F.; de Andrade Feitosa, J.P.; de Paula, R.C.M. Application of cashew tree gum on the production and stability of spray-dried fish oil. Food Chem. 2017, 221, 1522–1529. [Google Scholar] [CrossRef]
- Loureiro, K.C.; Lima-Verde, I.B.; Johannisson, A.; Ntallaris, T.; Jager, A.; Štěpánek, P.; da Costa Mendonça, M.; Severino, P.; Morrell, J.M. Effects of cashew gum and nanoparticles on cooled stallion semen. Acta Vet. Scand. 2020, 62, 31. [Google Scholar] [CrossRef] [PubMed]
- Mothé, C.G.; Oliveira, N.N.; de Freitas, J.S.; Mothé, M.G. Cashew tree gum: A scientific and technological review. Int. J. Environ. Agric. Biotechnol. 2017, 2, 238716. [Google Scholar] [CrossRef]
- Andrade, K.; de Carvalho, C.W.; Takeiti, C.Y. Goma de cajueiro (Anacardium occidentale): Avaliação das modificações químicas e físicas por extrusão termoplástica. Polímeros 2013, 23, 667–671. [Google Scholar] [CrossRef] [Green Version]
- Olorunsola, E.O.; Bhatia, P.G.; Tytler, B.A.; Adedokun, M.O.; Adikwu, M.U. Dissolution and permeation characteristics of artemether tablets formulated with two gums of different surface activity. Trop. J. Pharm. Res. 2017, 16, 981–988. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. VosViewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com (accessed on 26 June 2022).
- Amorim, A.d.G.N.; Sánchez-Paniagua, M.; de Oliveira, T.M.; Mafud, A.C.; da Silva, D.A.; de Almeida, J.R.d.S.; López-Ruiz, B. Synthesis, characterization and use of enzyme cashew gum nanoparticles for biosensing applications. J. Mater. Chem. B 2021, 9, 6825–6835. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, G.A., Jr.; Santos, C.M.; Silva, D.A.; Maciel, J.S.; Feitosa, J.P.; Paula, H.C.; de Paula, R.C. Microspheres of chitosan/carboxymethyl cashew gum (CH/CMCG): Effect of chitosan molar mass and CMCG degree of substitution on the swelling and BSA release. Carbohydr. Polym. 2009, 77, 217–222. [Google Scholar]
- De Oliveira, E.F.; Paula, H.C.; de Paula, R.C. Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf. B Biointerfaces 2014, 113, 146–151. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Akanbi, T.O.; Khalid, N.; Adhikari, B.; Barrow, C.J. Complex coacervation: Principles, mechanisms and applications in microencapsulation. Int. J. Biol. Macromol. 2019, 121, 1276–1286. [Google Scholar] [CrossRef]
- Gomez-Estaca, J.; Comunian, T.A.; Montero, P.; Ferro-Furtado, R.; Fávaro-Trindade, C.S. Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin–cashew gum complex. Food Hydrocoll. 2016, 61, 155–162. [Google Scholar] [CrossRef]
- Araruna, F.B.; de Oliveira, T.M.; Quelemes, P.V.; de Araújo Nobre, A.R.; Plácido, A.; Vasconcelos, A.G.; de Paula, R.C.M.; Mafud, A.C.; de Almeida, M.P.; Delerue-Matos, C.; et al. Antibacterial application of natural and carboxymethylated cashew gum-based silver nanoparticles produced by microwave-assisted synthesis. Carbohydr. Polym. 2020, 241, 115260. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, D.A.; Feitosa, J.P.; Paula, H.C.; de Paula, R.C. Synthesis and characterization of cashew gum/acrylic acid nanoparticles. Mater. Sci. Eng C 2009, 29, 437–441. [Google Scholar] [CrossRef]
- Paula, H.C.; Sombra, F.M.; de Freitas Cavalcante, R.; Abreu, F.O.; de Paula, R.C. Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Mater. Sci. Eng. C 2011, 31, 173–178. [Google Scholar] [CrossRef]
- Abreu, F.O.; Oliveira, E.F.; Paula, H.C.; de Paula, R.C. Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr. Polym. 2012, 89, 1277–1282. [Google Scholar] [CrossRef] [Green Version]
- Pitombeira, N.A.; Neto, J.G.V.; Silva, D.A.; Feitosa, J.P.; Paula, H.C.; de Paula, R.C. Self-assembled nanoparticles of acetylated cashew gum: Characterization and evaluation as potential drug carrier. Carbohydr. Polym. 2015, 117, 610–615. [Google Scholar] [CrossRef]
- De Barros Fernandes, R.V.; Botrel, D.A.; Silva, E.K.; Borges, S.V.; de Oliveira, C.R.; Yoshida, M.I.; de Andrade Feitosa, J.P.; de Paula, R.C.M. Cashew gum and inulin: New alternative for ginger essential oil microencapsulation. Carbohydr. Polym. 2016, 153, 133–142. [Google Scholar] [CrossRef]
- Abreu, C.M.; Paula, H.C.; Seabra, V.; Feitosa, J.P.; Sarmento, B.; de Paula, R.C. Synthesis and characterization of non-toxic and thermo-sensitive poly (N-isopropylacrylamide)-grafted cashew gum nanoparticles as a potential epirubicin delivery matrix. Carbohydr. Polym. 2016, 154, 77–85. [Google Scholar] [CrossRef]
- Dias, S.F.L.; Nogueira, S.S.; de França Dourado, F.; Guimarães, M.A.; de Oliveira Pitombeira, N.A.; Gobbo, G.G.; Primo, F.L.; de Paula, R.C.M.; Feitosa, J.P.A.; Tedesco, A.C. Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine. Carbohydr. Polym. 2016, 143, 254–261. [Google Scholar] [CrossRef]
- Silva, F.; Torres, L.; Silva, L.; Figueiredo, R.; Garruti, D.; Araújo, T.; Duarte, A.; Brito, D.; Ricardo, N. Cashew gum and maltrodextrin particles for green tea (Camellia sinensis var Assamica) extract encapsulation. Food Chem. 2018, 261, 169–175. [Google Scholar] [CrossRef]
- Porto, B.C.; Cristianini, M. Effect of dynamic high pressure on emulsifying and encapsulant properties of cashew tree gum. Carbohydr. Polym. 2018, 186, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.R.; Paula, H.C.; Abreu, F.O.; da Silva, R.B.; Sombra, F.M.; de Paula, R.C. Hydrophobization of cashew gum by acetylation mechanism and amphotericin B encapsulation. Int. J. Biol. Macromol. 2018, 108, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Richter, A.; Feitosa, J.; Paula, H.; Goycoolea, F.; de Paula, R. Pickering emulsion stabilized by cashew gum-poly-l-lactide copolymer nanoparticles: Synthesis, characterization and amphotericin B encapsulation. Colloids Surf. B Biointerfaces 2018, 164, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Do Amaral Rodrigues, J.; de Araújo, A.R.; Pitombeira, N.A.; Plácido, A.; de Almeida, M.P.; Veras, L.M.C.; Delerue-Matos, C.; Lima, F.C.D.A.; Neto, A.B.; de Paula, R.C.M. Acetylated cashew gum-based nanoparticles for the incorporation of alkaloid epiisopiloturine. Int. J. Biol. Macromol. 2019, 128, 965–972. [Google Scholar] [CrossRef]
- Lima Cardial, M.R.; Paula, H.C.B.; da Silva, R.B.C.; da Silva Barros, J.F.; Richter, A.R.; Sombra, F.M.; de Paula, R.C.M. Pickering emulsions stabilized with cashew gum nanoparticles as indomethacin carrier. Int. J. Biol. Macromol. 2019, 132, 534–540. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, W.Q.; Wurlitzer, N.J.; de Oliveira Araújo, A.W.; Comunian, T.A.; Bastos, M.d.S.R.; de Oliveira, A.L.; Magalhães, H.C.R.; Ribeiro, H.L.; de Figueiredo, R.W.; de Sousa, P.H.M. Complex coacervates of cashew gum and gelatin as carriers of green coffee oil: The effect of microcapsule application on the rheological and sensorial quality of a fruit juice. Food Res. Int. 2020, 131, 109047. [Google Scholar] [CrossRef]
- Richter, A.R.; Carneiro, M.J.; de Sousa, N.A.; Pinto, V.P.; Freire, R.S.; de Sousa, J.S.; Mendes, J.F.; Fontenelle, R.O.; Feitosa, J.P.; Paula, H.C. Self-assembling cashew gum-graft-polylactide copolymer nanoparticles as a potential amphotericin B delivery matrix. Int. J. Biol. Macromol. 2020, 152, 492–502. [Google Scholar] [CrossRef]
- Moraes, R.R.; de Oliveira Farias, E.A.; Carvalho, C.L.; Cantanhêde, W.; Eiras, C. Development of cashew gum-based bionanocomposite as a platform for electrochemical trials. Int. J. Biol. Macromol. 2020, 153, 118–127. [Google Scholar] [CrossRef]
- Oliveira, D.M.L.; Rezende, P.S.; Barbosa, T.C.; Andrade, L.N.; Bani, C.; Tavares, D.S.; da Silva, C.F.; Chaud, M.V.; Padilha, F.; Cano, A.; et al. Double membrane based on lidocaine-coated polymyxin-alginate nanoparticles for wound healing: In vitro characterization and in vivo tissue repair. Int. J. Pharm. 2020, 591, 120001. [Google Scholar] [CrossRef]
- Ataide, J.A.; Gerios, E.F.; Cefali, L.C.; Fernandes, A.R.; Teixeira, M.D.C.; Ferreira, N.R.; Tambourgi, E.B.; Jozala, A.F.; Chaud, M.V.; Oliveira-Nascimento, L.; et al. Effect of Polysaccharide Sources on the Physicochemical Properties of Bromelain-Chitosan Nanoparticles. Polymers 2019, 11, 1681. [Google Scholar] [CrossRef] [Green Version]
- Severino, P.; da Silva, C.F.; Andrade, L.N.; de Lima Oliveira, D.; Campos, J.; Souto, E.B. Alginate Nanoparticles for Drug Delivery and Targeting. Curr. Pharm. Des. 2019, 25, 1312–1334. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; Chaud, M.V.; Shimojo, A.; Antonini, D.; Lancelloti, M.; Santana, M.H.; Souto, E.B. Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies. Colloids Surf. B Biointerfaces 2015, 129, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Dmour, I.; Taha, M.O. Natural and semisynthetic polymers in pharmaceutical nanotechnology. Org. Mater. Smart Nanocarriers Drug Deliv. 2018, 35–100. [Google Scholar] [CrossRef]
- Silvia, D.R.e.a. Micro e Nanopartículas do Biopolímero da Goma do Cajueiro Acetilada Para Veiculação de Fármacos. Patent No. BR 10 2018 014996 2 A2, 23 July 2018. [Google Scholar]
- Silvia, K.F.F. Plástico Biodegradável à Base de Goma de Cajueiro Para Aplicação Como Embalagem de Produtos Comerciais Desidratados. Patent No. BR 10 2017 020813 3 A2, 28 September 2017. [Google Scholar]
- De Carvalho, M.D. Matriz Porosa Desenvolvida à Base de Quitosana e Polissacarídeo Exsudato da Anacardium Occidentale L. Modificado com Anidrido Ftálico Para Cultivo de Células-Tronco Mesenquimais. Patent No. BR 10 2017 012139 9 A2, 8 June 2017. [Google Scholar]
- Silvia, K.F.F. Espuma Sólida Nanoporosa Hidrossolúvel Para Liberação Controlada de Drogas em mucosas. Patent No. BR 10 2017 007322 0 A2, 10 April 2017. [Google Scholar]
- Mothé, C.G.; Lannes, S.C.S.; Mothé, M.G. Composições Alimentícias de Chocolate Contendo Goma de Cajueiro, em Barra, Bombom e Chocolate em pó, Úteis Como Alimento Funcional e Nutracêutico. Patent No. BR 10 2016 027801 5 A2, 25 November 2016. [Google Scholar]
- Brasil, I.M.; Figueiredo, R.W.; Figueiredo, E.A.T.; Pontes, D.F.; Oliveira, L.S.; Zambell, R.A. Nanoencapsulados de Resíduos da Industria de Processamento de Frutas em Matriz Polieletrolitica de Goma de Cajueiro e Quitosana Para Uso Como Revestimento em Frutas Minimamente Processadas. Patent No. BR 10 2016 018308 1 A2, 9 August 2016. [Google Scholar]
- Torres, L.B.V.; Silva, F.M.R.; Zocolo, G.J.; Ricardo, N.M.P.S.; Garruti, D.S.; Figueiredo, R.W. Encapsulamento de Chá Verde (Camelliasinensis) por “Spray Drier” Com Goma de Cajueiro/Maltodextrina. Patent No. BR 10 2016 002436 6 A2, 3 February 2016. [Google Scholar]
- Sobrinho, J.L.S.S.; Cordeiro, M.S.F.; De Sá, L.L.F.; Da Silva, C.M.B.; De Souza, F.R.L.; Nunes, L.C.C.; Filho, E.C.S.N.; Neto, P.J.R. Blenda Polimérica Mucoadesiva Para Liberação Prolongada de Fármacos. Patent No. BR 10 2015 027337 1 A2, 28 October 2015. [Google Scholar]
- Klein, J.M.; Forte, M.M.C. Process of Obtaining a Biodegradable Flocculant from Cashew gum and Its Use for Water and Effluent Treatment. Patent No. BR 102015005684A2, 13 March 2015. [Google Scholar]
- Cunha, C.M.D.G.; Soares, P.A.G.; Neto, A.C.A.; Pessoa, A.J. Hidrogel a Base de Polissacarídeos Naturais, Processos e Usos. Patent No. BR 10 2014 014009 3 A2, 10 June 2014. [Google Scholar]
- Rubira, A.F.; Muniz, E.C.; Feitosa, J.P.d.A.; Guilherme, M.R. Hidrogéis Superabsorventes Constituídos da Goma do Cajueiro Modificada e Acrilamida. Patent No. PI 0404265-4 A2, 29 September 2004. [Google Scholar]
- Correia, J.C.G.; Ribeiro, R.C.d.C.; Monte, M.B.d.M.; Seidl, P.R. Processo Para a Utilização da Goma de Cajueiro como depressor na flotação de minerais calcários. Patent No. PI 0304986-8 A2, 15 September 2003. [Google Scholar]
- Mothé, C.G. Processo de Obtenção de Goma de Cajueiro Purificada e Composição de Goma de Cajueiro Purificada. Patent No. PI 0004114-9 B1, 12 September 2000. [Google Scholar]
- Paula, R.C.M.d.; Rodrigues, J.F. Método de isolamento da goma do cajueiro (Anacardium occidentale L.). Patent No. PI 9005645-0 A2, 31 October 1990. [Google Scholar]
- Soares, P.A.; Bourbon, A.I.; Vicente, A.A.; Andrade, C.A.; Barros, W., Jr.; Correia, M.T.; Pessoa, A., Jr.; Carneiro-da-Cunha, M.G. Development and characterization of hydrogels based on natural polysaccharides: Policaju and chitosan. Mater. Sci. Eng. C 2014, 42, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name of Gum | Pharmaceutical Applications | Food Applications | References |
---|---|---|---|
Agar | Compound for suppository, suspension and emulsification, disintegrant, lubricant and laxative. | Dairy, meat and confectionery products. | [25,26] |
Arabic | Suspending agent, emulsifying agent, binder in tablets, emollient in cosmetics, osmotic drug delivery. | Chocolate, beverages and soft drinks. | [27,28,29] |
Carrageenan | Gelling agent, stabilizer in emulsions and suspensions, toothpaste, demulcent and laxative. | Ice cream, milk shake mixes, cream cheese, dairy desserts and chocolate milks. | [30,31,32] |
Ghatti | Binder, emulsifier, suspending agent. | Dressings, processed cheese and beverages. | [33,34] |
Guar | Binder, disintegrant, thickening agent, emulsifier, laxative, sustained release agent, colon-targeted drug delivery, cross-linked microspheres. | Drinks, sauces, soups, ketchups and mayonnaises. | [35,36,37,38] |
Karaya | Suspending agent, emulsifying agent, dental adhesive, sustaining agent in tablets, bulk laxative, mucoadhesive. | Cheese spreads, and as a binder for low-calorie, dough-based products such as pasta and bread. | [39,40,41] |
Locust bean | Thickener, stabilizer and controlled release agent, formulation of oral delivery systems based on tablets, hydrogels and multiparticulate systems. | Ice cream, bakery products, edible films/coating, hot-prepared sauces, soups, dressings, ketchups and mayonnaise. | [33,42,43] |
Tragacanth | Suspending agent, emulsifying agent, demulcent, emollient in cosmetics and sustained release agent. | Salad dressings, bakery emulsions, fruit beverages and sauces. | [44,45] |
Xanthan | Suspending agent, emulsifier, stabilizer in toothpaste, ointments, sustained release agent, buccal drug delivery system. | Ice creams, pasteurized process cheese dips, frozen desserts and beverages. | [46,47,48] |
Inventor | Request | Deposit | Title | Reference |
---|---|---|---|---|
Federal University of Pernambuco | BR 10 2018 014996 2 | 23/07/2018 | Micro and nanoparticles of acetyled cashew gum biopolymer for pharmaceutical delivery. | [90] |
Goiás Federal University | BR 10 2017 020813 3 | 28/09/2017 | Biodegradable plastic based on cashew gum for application as packaging for dehydrated commercial products. | [91] |
Federal University of Piauí | BR 10 2017 012139 9 | 08/06/2017 | Porous matrix developed based on chitosan and polysaccharide exudate from Anacardium occidentale L. modified with phthalic anhydride for cultivation of mesenchymal stem cells. | [92] |
Goiás Federal University | BR 10 2017 007322 | 10/04/2017 | Water-soluble nanoporous solid foam for controlled release of drugs into mucous membranes. | [93] |
Cheila Gonçalves Mothé | BR 10 2016 027801 5 | 25/11/2016 | Chocolate food compositions containing cashew gum, in bars, bonbons and powdered chocolate, useful as functional and nutraceutical food. | [94] |
Federal University of Ceará | BR 10 2016 018308 1 | 09/08/2016 | Nanoencapsulated waste from the fruit processing industry in a polyelectrolytic matrix of cashew gum and chitosan for use as a coating on minimally processed fruits. | [95] |
Federal University of Ceará | BR 10 2016 002436 6 | 03/02/2016 | Encapsulation of green tea (Camellia Sinensis) by “spray dryer” with cashew gum / maltodextrin. | [96] |
Federal University of Pernambuco / Federal University of Piauí | BR 10 2015 027337 1 | 28/10/2015 | Mucoadhesive polymer blend for prolonged drug release. | [97] |
Federal University of Rio Grande do Sul | BR 10 2015 005684 2 | 13/03/2015 | Process of obtaining a biodegradable flocculant from cashew gum and its use for water and effluent treatment. | [98] |
Federal University of Pernambuco / University of São Paulo | BR 10 2014 014009 3 | 10/06/2014 | Hydrogel based on natural polysaccharides, processes and uses. | [99] |
National Council for Scientific and Technological Development | PI 0404265-4 | 29/09/2004 | Superabsorbent hydrogels made from modified cashew gum and acrylamide. | [100] |
Mineral Technology Center | PI 0304986-8 | 15/09/2003 | Process for using cashew gum as a depressant in flotation of limestone minerals. | [101] |
Cheila Gonçalves Mothé | PI 0004114-9 | 12/09/2000 | Process of obtaining purified cashew gum and composition of purified cashew gum. | [102] |
Federal University of Ceará | PI 9005645-0 | 31/10/1990 | Isolation method of cashew gum (Anacardium occidentale L.). | [103] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, R.G.; de Andrade, L.R.M.; Andrade, L.N.; Loureiro, K.C.; Souto, E.B.; Severino, P. Cashew Gum: A Review of Brazilian Patents and Pharmaceutical Applications with a Special Focus on Nanoparticles. Micromachines 2022, 13, 1137. https://doi.org/10.3390/mi13071137
Amaral RG, de Andrade LRM, Andrade LN, Loureiro KC, Souto EB, Severino P. Cashew Gum: A Review of Brazilian Patents and Pharmaceutical Applications with a Special Focus on Nanoparticles. Micromachines. 2022; 13(7):1137. https://doi.org/10.3390/mi13071137
Chicago/Turabian StyleAmaral, Ricardo G., Lucas R. Melo de Andrade, Luciana N. Andrade, Kahynna C. Loureiro, Eliana B. Souto, and Patrícia Severino. 2022. "Cashew Gum: A Review of Brazilian Patents and Pharmaceutical Applications with a Special Focus on Nanoparticles" Micromachines 13, no. 7: 1137. https://doi.org/10.3390/mi13071137
APA StyleAmaral, R. G., de Andrade, L. R. M., Andrade, L. N., Loureiro, K. C., Souto, E. B., & Severino, P. (2022). Cashew Gum: A Review of Brazilian Patents and Pharmaceutical Applications with a Special Focus on Nanoparticles. Micromachines, 13(7), 1137. https://doi.org/10.3390/mi13071137