Enhanced Deep Ultraviolet Photoresponse in Ga doped ZnMgO Thin Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth of Sample
2.2. Fabrication of the UVPDs
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Gu, L.L.; Zhang, Q.P.; Wu, J.Y.; Long, Y.Z.; Fan, Z.Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014, 5, 4007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.G.; Shi, H.Z.; Chen, K.; Guo, D.Y.; Cui, W.; Zhi, Y.S.; Wang, S.L.; Wu, Z.P.; Chen, Z.W.; Tang, W.H. Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector. J. Mater. Chem. C 2017, 5, 10562. [Google Scholar] [CrossRef]
- Bera, A.; Basak, D. Photoluminescence and Photoconductivity of ZnS-Coated ZnO Nanowires. ACS Appl. Mater. Interfaces 2010, 2, 408. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.F.; Xu, C.X.; Dai, J.; Li, J.T.; Wang, Y.Y.; Lin, Y.; Li, P.L. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale 2015, 7, 3396. [Google Scholar] [CrossRef]
- Zhang, B.K.; Wang, D.B.; Jiao, S.J.; Xu, Z.K.; Liu, Y.X.; Zhao, C.C.; Pan, J.W.; Liu, D.H.; Liu, G.; Jiang, B.J.; et al. TiO2-X mesoporous nanospheres/BiOI nanosheets S-scheme heterostructure for high efficiency, stable and unbiased photocatalytic hydrogen production. Chem. Eng. J. 2022, 446, 137138. [Google Scholar] [CrossRef]
- Jiao, S.J.; Lu, Y.M.; Zhang, Z.Z.; Li, B.H.; Yao, B.; Zhang, J.Y.; Zhao, D.X.; Shen, D.Z.; Fan, X.W. Optical and electrical properties of highly nitrogen-doped ZnO thin films grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 2007, 102, 113509. [Google Scholar] [CrossRef] [Green Version]
- Flemban, T.H.; Haque, M.A.; Ajia, I.; Alwadai, N.; Mitra, S.; Wu, T.; Roqan, I.S. A Photodetector Based on p-Si/n-ZnO Nanotube Heterojunctions with High Ultraviolet Responsivity. ACS Appl. Mater. Interface 2017, 9, 37120–37127. [Google Scholar] [CrossRef]
- Pung, S.Y.; Choy, K.L.; Hou, X.; Shan, C.X. Preferential growth of ZnO thin films by the atomic layer deposition technique. Nanotechnology 2008, 19, 435609. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, J.L.; Shi, J.J.; Zeng, T.; Shan, X.Y.; Wang, Z.Q.; Zhao, X.N.; Xu, H.Y.; Liu, Y.C. Nitrogen-induced ultralow power switching in flexible ZnO-based memristor for artificial synaptic learning. Appl. Phys. Lett. 2021, 118, 103502. [Google Scholar] [CrossRef]
- Han, S.; Shao, Y.K.; Lu, Y.M.; Cao, P.J.; Liu, W.J.; Zeng, Y.X.; Jia, F.; Zhu, D.L.; Ma, X.C. Effect of different migration energy for reaction atoms on growth orientation and optical absorption characteristics of cubic MgZnO thin films under different pressure by PLD method. J. Cryst. Growth 2014, 408, 125–128. [Google Scholar] [CrossRef]
- Zuniga-Perez, J. ZnCdO: Status after 20 years of research. Mat. Sci. Semicon. Proc. 2017, 69, 36–43. [Google Scholar] [CrossRef]
- Shi, H.L.; Duan, Y. Band-gap bowing and p-type doping of (Zn, Mg, Be)O wide-gap semiconductor alloys: A first-principles study. Eur. Phys. J. B 2008, 66, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.N.; Mei, Z.X.; Liang, H.L.; Ye, D.Q.; Gu, C.Z.; Du, X.L. Dual-band MgZnO ultraviolet photodetector integrated with Si. Appl. Phys. Lett. 2013, 102, 153510. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.L.; Liu, K.W.; Shen, D.Z. Recent progress of ZnMgO ultraviolet photodetector. Chin. Phys. B 2017, 26, 047308. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, K.; Wang, X.; Yang, J.; Chen, X.; Xie, X.; Li, B.; Shen, D. Performance improvement of a ZnMgO ultraviolet detector by chemical treatment with hydrogen peroxide. J. Phys. Chem. C 2017, 5, 7598–7603. [Google Scholar] [CrossRef]
- Ma, S.; Feng, S.L.; Kang, S.; Wang, F.; Fu, X.; Lu, W.Q. A High Performance Solar-Blind Detector Based on Mixed-Phase Zn0.45Mg0.55O Alloy Nanowires Network. Electron. Mater. Lett. 2019, 15, 303–313. [Google Scholar] [CrossRef]
- Borkovska, L.; Khomenkova, L.; Markevich, I.; Osipyonok, M.; Kolomys, O.; Rarata, S.; Oberemok, O.; Gudymenko, O.; Kryvko, A.; Strelchuk, V. The effect of high temperature annealing on the photoluminescence of ZnMgO alloys. Phys. Status Solidi A 2018, 215, 1800250. [Google Scholar] [CrossRef]
- Chen, H.Y.; Yu, P.P.; Zhang, Z.Z.; Teng, F.; Zheng, L.X.; Hu, K.; Fang, X.S. Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small 2016, 12, 5809–5816. [Google Scholar] [CrossRef]
- Fan, M.M.; Liu, K.W.; Chen, X.; Wang, X.; Zhang, Z.Z.; Li, B.H.; Shen, D.Z. Mechanism of excellent photoelectric characteristics in mixed-phase ZnMgO ultraviolet photodetectors with single cutoff wavelength. ACS Appl. Mater. Interface 2015, 7, 20600–20606. [Google Scholar] [CrossRef]
- Wang, R.C.; Lin, Y.X.; Wu, J.J. Intrinsic n-and p-Type MgZnO nanorods for deep-UV detection and room-temperature gas sensing. J. Phys. Chem. C 2015, 119, 29186–29192. [Google Scholar] [CrossRef]
- Takeuchi, I.; Yang, W.; Chang, K.S.; Aronova, M.A.; Venkatesan, T. Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in composition spreads. J. Appl. Phys. 2003, 94, 7336. [Google Scholar] [CrossRef]
- Xie, W.Z.; Wang, D.B.; Guo, F.Y.; Liu, T.R.; Jiao, S.J.; Wang, J.Z.; Gao, S.Y.; Yu, Q.J.; Zhang, Y.; Luan, C.Y.; et al. The effect of annealing temperature on the optical and electrical properties of cubic MgZnO films grown by RF magnetron sputtering. J. Mater. Sci. 2017, 28, 1644. [Google Scholar] [CrossRef]
- Matsubara, K.; Tampo, H.; Shibata, H.; Yamada, A.; Fons, P.; Iwata, K.; Niki, S. Band-gap modified Al-doped transparent conducting films deposited by pulsed laser deposition. Appl. Phys. Lett. 2004, 85, 1374. [Google Scholar] [CrossRef]
- Wei, W.; Jin, C.M.; Narayan, J.; Narayan, R.J. Optical and electrical properties of gallium-doped MgxZn1-xO. J. Appl. Phys. 2010, 107, 013510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.M.; He, G.H.; Chen, H.Y.; Zhang, Z.Z.; Zheng, L.X.; Shan, C.X.; Shen, D.Z.; Fang, X.S. Wavelength-Tunable Electroluminescent Light Sources from Individual Ga-Doped ZnO Microwires. Small 2017, 13, 1604034. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, R.; Pandey, P.C. Enhanced ultraviolet photo-response in Dy doped ZnO thin film. J. Appl. Phys. 2018, 123, 054502. [Google Scholar] [CrossRef]
- Cao, L.; Zhu, L.P.; Jiang, J.; Li, Y.; Zhang, Y.Z.; Ye, Z.Z. Preparation and properties of p-type Ag-doped ZnMgO thin films by pulsed laser deposition. J. Alloys Compd. 2012, 516, 157. [Google Scholar] [CrossRef]
- Yoon, J.G.; Cho, S.W.; Choi, W.S.; Kim, D.Y.; Chang, H.; Kim, C.O.; Lee, J.; Jeon, H.; Choi, S.H.; Noh, T.W. Electroluminescence from n–n isotype heterostructures of graded-band-gap ZnMgO: Al and ZnO films on platinized Si. J. Phys. D Appl. Phys. 2011, 44, 41. [Google Scholar] [CrossRef]
- Cuong, H.B.; Lee, C.S.; Jeong, S.H.; Lee, B.T. Realization of highly conductive Ga-doped ZnO film with abnormally wide band-gap using magnetron sputtering by simply lowering working pressure. Acta. Mater. 2017, 130, 47–55. [Google Scholar] [CrossRef]
- Przezdziecka, E.; Lisowski, W.; Reszka, A.; Kozznecki, A. Evidence of magnesium impact on arsenic acceptor state: Study of ZnMgO:As molecular beam epitaxy layers. Appl. Surf. Sci. 2018, 435, 676. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, M.M.; He, G.H.; Li, S.F.; Zhang, Z.Z.; Li, B.H.; Zhao, H.F.; Shan, C.X.; Shen, D.Z. Wavelength-Tunable Ultraviolet Electroluminescence from Ga-Doped ZnO Microwires. ACS Appl. Mater. Interface 2017, 9, 40743. [Google Scholar] [CrossRef] [PubMed]
- Sky, T.N.; Johansen, K.M.; Rise, H.N.; Svensson, B.G.; Vines, L. Gallium diffusion in zinc oxide via the paired dopant-vacancy mechanism. J. Appl. Phys. 2018, 123, 055701. [Google Scholar] [CrossRef]
- Ali, A.; Wang, D.B.; Wang, J.Z.; Jiao, S.J.; Guo, F.Y.; Zhang, Y.; Gao, S.Y.; Ni, S.M.; Wang, D.Z.; Zhao, L.C. ZnO nanorod arrays grown on an AlN buffer layer and their enhanced ultraviolet emission. Crystengcomm 2017, 19, 6085. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, D.B.; Wang, J.Z.; Jiao, S.J.; Liu, D.H.; Zhang, B.K.; Zhao, C.C.; Liu, Y.Y.; Liu, Y.X.; Xu, Z.K.; et al. Broadband Detection Based on 2D Bi2Se3/ZnO Nanowire Heterojunction. Crystals 2021, 11, 169. [Google Scholar] [CrossRef]
- Song, X.-X.; Liu, D.; Mosallanejad, V.; You, J.; Han, T.-Y.; Chen, D.-T.; Li, H.-O.; Cao, C.; Xiao, M.; Guo, G.-C.; et al. A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe2. Nanoscale 2015, 7, 16867–16873. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.Z.; Wang, Z.G.; Kawabeb, M.; Harrisond, I.; Ansellc, B.J.; Foxonc, T. Fabrication and characterization of metal–semiconductor–metal (MSM) ultraviolet photodetectors on undoped GaN/sapphire grown by MBE. J. Cryst. Growth 2015, 7, 16867–16873. [Google Scholar] [CrossRef]
- Wang, D.B.; Jiao, S.J.; Sun, S.J.; Zhao, L.C. Al0.40In0.02Ga0.58N based metal-semiconductor-metal photodiodes for ultraviolet detection. In Proceedings of the 2012 International Conference on Optoelectronics and Microelectronics, Changchun, China, 23–25 August 2012; p. 412. [Google Scholar]
- Fan, M.M.; Liu, K.W.; Chen, X.; Zhang, Z.Z.; Li, B.H.; Zhao, H.F.; Shen, D.Z. Realization of cubic ZnMgO photodetectors for UVB applications. J. Mater. Chem. C 2015, 3, 313. [Google Scholar] [CrossRef]
- Zhong, M.; Li, Y.; Tariq, M.; Hu, Y.M.; Li, W.X.; Zhu, M.Y.; Jin, H.M.; Li, Y.B. Effect of oxygen vacancy induced by pulsed magnetic field on the room-temperature ferromagnetic Ni-doped ZnO synthesized by hydrothermal method. J. Alloys Compd. 2016, 675, 286–291. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Chen, G.D.; Ye, H.G. Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys. Phys. Rev. B 2008, 77, 245209. [Google Scholar] [CrossRef] [Green Version]
- Cossu, G.; Ingo, G.M.; Mattogno, G.; Padeletti, G.; Proietti, G.M. XPS investigation on vacuum thermal desorption of UV/ozone treated GaAs(100) surfaces. Appl. Surf. Sci. 1992, 56–58, 81. [Google Scholar] [CrossRef]
- Yu, J.H.; Kim, J.H.; Jeong, T.S.; Akhtar, M.S.; Youn, C.J.; Hong, K.J. Study on the Structural and Optical Properties of Cd1-xZnxO Layers Enhanced by Rapid Thermal Annealing. Electron. Mater. Lett. 2011, 7, 215. [Google Scholar] [CrossRef]
- Godlewskiab, M.; Guziewicza, E.; Łukaa, G.; Krajewskia, T.; Łukasiewiczab, M.; Wachnickiab, Ł.; Wachnickaab, A.; Kopalkoa, K.; Saremc, B.; Dalatic, A. ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide. Thin Solid Films 2009, 518, 1145. [Google Scholar] [CrossRef]
- Ellmer, K.; Mientus, R. Carrier transport in polycrystalline ITO and ZnO: Al II: The influence of grain barriers and boundaries. Thin Solid Films 2008, 516, 5829. [Google Scholar] [CrossRef] [Green Version]
- Steiauf, D.; Lyons, J.L.; Janotti, A.; Van de Walle, C.G. First-principles study of vacancy-assisted impurity diffusion in ZnO. Appl. Mater. 2014, 2, 096101. [Google Scholar] [CrossRef] [Green Version]
- Johansen, K.M.; Vines, L.; Bjorhein, T.S.; Schifano, R.; Svensson, B.G. Aluminum Migration and Intrinsic Defect Interaction in Single-Crystal Zinc Oxide. Phys. Rev. Appl. 2015, 3, 024003. [Google Scholar] [CrossRef] [Green Version]
- Ke, Y.; Lany, S.; Berry, J.J.; Perkins, J.D.; Parilla, P.A.; Zakutayev, A.; Ohno, T.; O’Hayre, R.; Ginley, D.S. Enhanced electron mobility due to dopant-defect pairing in conductive ZnMgO. Adv. Funct. Mater. 2014, 24, 2875. [Google Scholar] [CrossRef]
- Kroger, F.A. The Chemistry of Imperfect Crystals Noth-Holland; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Demchenko, D.O.; Earles, B.; Liu, H.Y.; Avrutin, V.; Izyumskaya, N.; Ozgur, U.; Morkoc, H. Impurity complexes, and conductivity of Ga-doped ZnO. Phys. Rev. B 2011, 84, 075201. [Google Scholar] [CrossRef] [Green Version]
- Tuomisto, F.; Ranki, V.; Saarinen, K.; Look, D.C. Evidence of the Zn Vacancy Acting as the Dominant Acceptor in -Type ZnO. Phys. Rev. Lett. 2003, 91, 205502. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.B.; Yang, S.Y.; Zhang, P.F.; Wei, H.Y.; Liu, X.L.; Jiao, C.M.; Zhu, Q.S.; Chen, Y.H.; Wang, Z.G. Investigation of oxygen vacancy and interstitial oxygen defects in ZnO films by photoluminescence and X-ray photoelectron spectroscopy. Chin. Phys. Lett. 2007, 24, 2108. [Google Scholar]
- Coleman, V.A.; Bradby, J.E.; Jagadish, C. Observation of enhanced defect emission and excitonic quenching from spherically indented ZnO. Appl. Phys. Lett. 2006, 89, 082102. [Google Scholar] [CrossRef] [Green Version]
- Pan Gray, B.; Aslam, M.; Misra, D.S.; Ghosh, M.; Bahadur, D. Defect-Related Emissions and Magnetization Properties of ZnO Nanorods. Adv. Funct. Mater. 2010, 20, 1161. [Google Scholar] [CrossRef]
- Vlasenko, L.S.; Watkins, G.D. Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO. Phys. Rev. B 2005, 71, 125210. [Google Scholar] [CrossRef]
- Bandopadhyay, K.; Mitra, J. Zn interstitials and O vacancies responsible for ntype ZnO: What do the emission spectra reveal? RSC Adv. 2015, 5, 23540–23547. [Google Scholar] [CrossRef]
Sample | Composition (EDS) | Composition (XPS) | FWHM |
---|---|---|---|
Ga undope sample | Zn0.46Mg0.54O | Zn0.46Mg0.54O | 0.62° |
Ga dope sample | Zn0.39Mg0.58Ga0.03O | Zn0.41Mg0.57Ga0.02O | 0.44° |
Sample | Cut-Off Wave-Length | Carrier Concen-Trate (1016 cm−3) | Electron Mobility (cm2/V∙s) | T |
---|---|---|---|---|
Ga dope sample | 241 nm | 2.87 | 6.73 | N |
Ga undope sample | 244 nm | 0.19 | 2.26 | N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, M.; Wang, D.; Jiao, S.; Chen, L. Enhanced Deep Ultraviolet Photoresponse in Ga doped ZnMgO Thin Film. Micromachines 2022, 13, 1140. https://doi.org/10.3390/mi13071140
Ye M, Wang D, Jiao S, Chen L. Enhanced Deep Ultraviolet Photoresponse in Ga doped ZnMgO Thin Film. Micromachines. 2022; 13(7):1140. https://doi.org/10.3390/mi13071140
Chicago/Turabian StyleYe, Mao, Dongbo Wang, Shujie Jiao, and Lang Chen. 2022. "Enhanced Deep Ultraviolet Photoresponse in Ga doped ZnMgO Thin Film" Micromachines 13, no. 7: 1140. https://doi.org/10.3390/mi13071140
APA StyleYe, M., Wang, D., Jiao, S., & Chen, L. (2022). Enhanced Deep Ultraviolet Photoresponse in Ga doped ZnMgO Thin Film. Micromachines, 13(7), 1140. https://doi.org/10.3390/mi13071140